Abstract

Skeletal muscle can undergo a regenerative process in response to injury or disease to preserve muscle mass and function, which are critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum stress sensor and mediates a key branch of the unfolded protein response. In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1α acts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy, loss of muscle IRE1α resulted in augmented myostatin signaling and exacerbated the dystrophic phenotypes. These results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering insight into potential therapeutic strategies for muscle loss diseases.

Authors

Shengqi He, Tingting Fu, Yue Yu, Qinhao Liang, Luyao Li, Jing Liu, Xuan Zhang, Qian Zhou, Qiqi Guo, Dengqiu Xu, Yong Chen, Xiaolong Wang, Yulin Chen, Jianmiao Liu, Zhenji Gan, Yong Liu

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement