Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Epigenetic reprogramming to prevent genetic cardiomyopathy
Jamie R. Johnston, … , Daniel F. Selgrade, Elizabeth M. McNally
Jamie R. Johnston, … , Daniel F. Selgrade, Elizabeth M. McNally
Published January 4, 2021
Citation Information: J Clin Invest. 2021;131(1):e143684. https://doi.org/10.1172/JCI143684.
View: Text | PDF
Commentary

Epigenetic reprogramming to prevent genetic cardiomyopathy

  • Text
  • PDF
Abstract

Mutations in the gene that codes for lamin A/C (LMNA) are a common cause of adult-onset cardiomyopathy and heart failure. In this issue of the JCI, Guénantin and Jebeniani et al. identify impaired cardiomyocyte development and maturation as a prenatal feature in a model of laminopathy. Cardiomyocytes carrying the Lmna point mutation H222P misexpressed genes involved in the epithelial-mesenchymal transition and showed decreased methylation at the fourth lysine of histone H3 (H3K4). Notably, inhibiting lysine-specific demethylase 1 in the LMNA H222P mouse model treated this congenital form of cardiomyopathy and improved survival in utero. These data highlight early epigenomic modifications in lamin A/C-mediated pathology and indicate a unique therapeutic strategy for cardiomyopathy.

Authors

Jamie R. Johnston, Daniel F. Selgrade, Elizabeth M. McNally

×

Figure 1

The H222P Lmna mutation inhibits proper EMT in developing cardiomyocytes.

Options: View larger image (or click on image) Download as PowerPoint
The H222P Lmna mutation inhibits proper EMT in developing cardiomyocytes...
(A) In the normal developing heart, MESP1 is required for normal EMT. (B) In LmnaH222P/+ ESC-derived cardiomyocytes, activity of histone demethylase LSD1 results in decreased MESP1, resulting in reduced EMT. (C) Inhibition of LSD1 via a small molecule GSK1-LSD restores cardiac function in LmnaH222P/H222P mice. Restoration of proper chromatin accessibility represents an attractive therapeutic target to prevent cardiomyopathy in laminopathies. TF, transcription factor; RNAPol, RNA polymerase.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts