Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice
Masashi Suzuki, … , Eduardo Marbán, Haruaki Nakaya
Masashi Suzuki, … , Eduardo Marbán, Haruaki Nakaya
Published February 15, 2002
Citation Information: J Clin Invest. 2002;109(4):509-516. https://doi.org/10.1172/JCI14270.
View: Text | PDF
Article

Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice

  • Text
  • PDF
Abstract

Recently it has been postulated that mitochondrial ATP-sensitive K+ (mitoKATP) channels rather than sarcolemmal KATP (sarcKATP) channels are important as end effectors and/or triggers of ischemic preconditioning (IPC). To define the pathophysiological significance of sarcKATP channels, we conducted functional experiments using Kir6.2-deficient (KO) mice. Metabolic inhibition with glucose-free, dinitrophenol-containing solution activated sarcKATP current and shortened the action potential duration in ventricular cells isolated from wild-type (WT) but not KO mice. MitoKATP channel function was preserved in KO ventricular cells. In anesthetized mice, IPC reduced the infarct size in WT but not KO mice. Following global ischemia/reperfusion, the increase of left ventricular end-diastolic pressure during ischemia was more marked, and the recovery of contractile function was worse, in KO hearts than in WT hearts. Treatment with HMR1098, a sarcKATP channel blocker, but not 5-hydroxydecanoate, a mitoKATP channel blocker, produced a deterioration of contractile function in WT hearts comparable to that of KO hearts. These findings suggest that sarcKATP channels figures prominently in modulating ischemia/reperfusion injury in the mouse. The rapid heart rate of the mouse (>600 beats per minute) may magnify the relative importance of sarcKATP channels during ischemia, prompting caution in the extrapolation of the conclusions to larger mammals.

Authors

Masashi Suzuki, Norihito Sasaki, Takashi Miki, Naoya Sakamoto, Yuki Ohmoto-Sekine, Masaji Tamagawa, Susumu Seino, Eduardo Marbán, Haruaki Nakaya

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Effects of metabolic inhibition with a glucose-free, DNP-containing (50 ...
Effects of metabolic inhibition with a glucose-free, DNP-containing (50 μM) solution and coapplication of glibenclamide (GLB; 10 μM) on the whole-cell membrane currents recorded from ventricular cells of WT (a) and KO mice (b). (c) Current densities at 0 mV in WT (n = 10) and KO ventricular cells (n = 10) are summarized. Values are expressed as mean ± SE. *P < 0.01 versus control (CON); #P < 0.01 versus DNP, no glucose.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts