Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice
Joachim Pohlenz, … , Shioko Kimura, Samuel Refetoff
Joachim Pohlenz, … , Shioko Kimura, Samuel Refetoff
Published February 15, 2002
Citation Information: J Clin Invest. 2002;109(4):469-473. https://doi.org/10.1172/JCI14192.
View: Text | PDF
Article Genetics

Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice

  • Text
  • PDF
Abstract

Three genes, TTF1, TTF2, and PAX8, involved in thyroid gland development and migration have been identified. Yet systematic screening for defects in these genes in thyroid dysgenesis gave essentially negative results. In particular, no TTF1 gene defects were found in 76 individuals with thyroid dysgenesis even though a deletion of this gene in the mouse results in thyroid and lung agenesis and defective diencephalon. We report a 6-year-old boy with predominant dyskinesia, neonatal respiratory distress, and mild hyperthyrotropinemia. One allele of his TTF1 gene had a guanidine inserted into codon 86 producing a nonsense protein of 407, rather than 371, amino acids. The mutant TTF1 did not bind to its canonical cis-element or transactivate a reporter gene driven by the thyroglobulin promoter, a natural target of TTF1. Failure of the mutant TTF1 to interfere with binding and transactivation functions of the wild-type TTF1 suggested that the syndrome was caused by haploinsufficiency. This was confirmed in mice heterozygous for Ttf1 gene deletion, heretofore considered to be normal. Compared with wild-type littermates, Ttf1+/– mice had poor coordination and a significant elevation of serum thyrotropin. Therefore, haploinsufficiency of the TTF1 gene results in a predominantly neurological phenotype and secondary hyperthyrotropinemia.

Authors

Joachim Pohlenz, Alexandra Dumitrescu, Dorothee Zundel, Ursula Martiné, Winfried Schönberger, Eugene Koo, Roy E. Weiss, Ronald N. Cohen, Shioko Kimura, Samuel Refetoff

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Identification of the mutation in the TTF1 gene and synthesis of the mut...
Identification of the mutation in the TTF1 gene and synthesis of the mutTTF1. (a) Fragments of sequence chromatograms of PCR-amplified genomic DNA from a normal individual and the patient. Sense and the corresponding antisense sequences show the insertion of a G and a C, respectively (arrows), at position 255 of the patient’s TTF1 gene (numbering beginning with the first coding nucleotide in exon 2). The mutation involves one of the two alleles producing a “double” sequence beyond the insertion site. The encoded amino acids of wild-type and mutant TTF1 genes are indicated. (b) The deduced amino acid sequence of the mutTTF1 (divergent sequence in red) compared with the wtTTF1 (in black). The homeobox and the glutamine/alanine–rich regions of the wtTTF1 are boxed and underlined, respectively. Note that these sequences are lost in the mutTTF1, which has 36 additional amino acids. (c) The products of in vitro translation, analyzed by SDS-PAGE. One microgram of plasmid DNA containing the wild-type (dog and human) TTF1 and mutTTF1 cDNAs served as template in a coupled transcription/translation reaction in rabbit reticulocyte lysate in the presence of 35S-Met. The dried gel was then radioautographed. The larger size of the mutTTF1 was confirmed. A smaller amount of a lower–molecular weight product represents a product translated from a downstream ATG, as previously described (13). Molecular weights were deduced from the amino acid sequences. Wt, wild-type.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts