Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Arsenic inhibition of telomerase transcription leads to genetic instability
Wen-Chien Chou, Anita L. Hawkins, John F. Barrett, Constance A. Griffin, Chi V. Dang
Wen-Chien Chou, Anita L. Hawkins, John F. Barrett, Constance A. Griffin, Chi V. Dang
View: Text | PDF
Article

Arsenic inhibition of telomerase transcription leads to genetic instability

  • Text
  • PDF
Abstract

Arsenic is effective in the treatment of acute promyelocytic leukemia. Paradoxically, it is also carcinogenic. In the process of elucidating a mechanism of arsenic resistance in a leukemia cell line, NB4, we discovered that arsenic exposure causes chromosomal abnormalities, with a preponderance of end-to-end fusions. These chromosomal end fusions suggested that telomerase activity may be inhibited by arsenic. We found that arsenic inhibits transcription of the hTERT gene, which encodes the reverse transcriptase subunit of human telomerase. This effect may in part be explained by decreased c-Myc and Sp1 transcription factor activities. Decreased telomerase activity leads to chromosomal end lesions, which promote either genomic instability and carcinogenesis or cancer cell death. These phenomena may explain the seemingly paradoxical carcinogenic and antitumor effects of arsenic.

Authors

Wen-Chien Chou, Anita L. Hawkins, John F. Barrett, Constance A. Griffin, Chi V. Dang

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
mRNA and protein levels of hTERT, hTER, c-myc, p53, and Sp1 in NB4 cells...
mRNA and protein levels of hTERT, hTER, c-myc, p53, and Sp1 in NB4 cells after arsenic treatment. (a) Northern blot analysis shows diminished hTERT and c-myc mRNA after 8 days of 0.75 μM arsenic treatment. By contrast, the RNA component of telomerase, hTER, is elevated in arsenic-treated samples. Levels of p53 and Sp1 mRNA were unchanged by arsenic. Human phosphoprotein (huPo) and GAPDH served as loading controls. (b) Immunoblotting shows a corresponding decrease in protein levels of hTERT and c-Myc after arsenic treatment, but p53 and Sp1 protein levels remained unaltered. Actin and γ-tubulin served as loading controls.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts