Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness
John P. Reilly, … , Muredach P. Reilly, Jason D. Christie
John P. Reilly, … , Muredach P. Reilly, Jason D. Christie
Published September 15, 2020
Citation Information: J Clin Invest. 2021;131(1):e139700. https://doi.org/10.1172/JCI139700.
View: Text | PDF
Clinical Medicine Pulmonology

The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness

  • Text
  • PDF
Abstract

BACKGROUND The ABO histo-blood group is defined by carbohydrate modifications and is associated with risk for multiple diseases, including acute respiratory distress syndrome (ARDS). We hypothesized that genetically determined blood subtype A1 is associated with increased risk of ARDS and markers of microvascular dysfunction and coagulation.METHODS We conducted analyses in 3 cohorts of critically ill trauma and sepsis patients (n = 3710) genotyped on genome-wide platforms to determine the association of the A1 blood type genotype with ARDS risk. We subsequently determined whether associations were present in FUT2-defined nonsecretors who lack ABO antigens on epithelium, but not endothelium. In a patient subgroup, we determined the associations of blood type with plasma levels of endothelial glycoproteins and disseminated intravascular coagulation (DIC). Lastly, we tested whether blood type A was associated with less donor lung injury recovery during human ex vivo lung perfusion (EVLP).RESULTS The A1 genotype was associated with a higher risk of moderate to severe ARDS relative to type O in all 3 populations. In sepsis, this relationship was strongest in nonpulmonary infections. The association persisted in nonsecretors, suggesting a vascular mechanism. The A1 genotype was also associated with higher DIC risk as well as concentrations of thrombomodulin and von Willebrand factor, which in turn were associated with ARDS risk. Blood type A was also associated with less lung injury recovery during EVLP.CONCLUSION We identified a replicable association between ABO blood type A1 and risk of ARDS among the critically ill, possibly mediated through microvascular dysfunction and coagulation.FUNDING NIH HL122075, HL125723, HL137006, HL137915, DK097307, HL115354, HL101779, and the University of Pennsylvania McCabe Fund Fellowship Award.

Authors

John P. Reilly, Nuala J. Meyer, Michael G.S. Shashaty, Brian J. Anderson, Caroline Ittner, Thomas G. Dunn, Brian Lim, Caitlin Forker, Michael P. Bonk, Ethan Kotloff, Rui Feng, Edward Cantu, Nilam S. Mangalmurti, Carolyn S. Calfee, Michael A. Matthay, Carmen Mikacenic, Keith R. Walley, James Russell, David C. Christiani, Mark M. Wurfel, Paul N. Lanken, Muredach P. Reilly, Jason D. Christie

×

Figure 1

Study populations.

Options: View larger image (or click on image) Download as PowerPoint
Study populations.
(A) PETROS, (B) MESSI, (C) iSPAAR. DNA was unavailabl...
(A) PETROS, (B) MESSI, (C) iSPAAR. DNA was unavailable in some patients because a whole blood sample was missed or minimal DNA was present in the whole blood sample (e.g., patient had leukopenia secondary to chemotherapy administration).

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts