Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations
Paarth B. Dodhiawala, … , Andrea Wang-Gillam, Kian-Huat Lim
Paarth B. Dodhiawala, … , Andrea Wang-Gillam, Kian-Huat Lim
Published June 23, 2020
Citation Information: J Clin Invest. 2020;130(9):4771-4790. https://doi.org/10.1172/JCI137660.
View: Text | PDF
Research Article Inflammation Oncology

TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations

  • Text
  • PDF
Abstract

NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.

Authors

Paarth B. Dodhiawala, Namrata Khurana, Daoxiang Zhang, Yi Cheng, Lin Li, Qing Wei, Kuljeet Seehra, Hongmei Jiang, Patrick M. Grierson, Andrea Wang-Gillam, Kian-Huat Lim

×

Figure 3

TPL2 mediates signaling between IRAK4 and the MAPK pathway.

Options: View larger image (or click on image) Download as PowerPoint
TPL2 mediates signaling between IRAK4 and the MAPK pathway.
(A) Immunobl...
(A) Immunoblot of Pa01C cells overexpressing HA epitope–tagged TPL2 WT that were treated with IRAK4i or vehicle (V) for 6 hours in serum-free condition. (B) Immunoblots of 293T cells transfected with WT IRAK4 for 48 hours. (C) Leading-edge analysis performed using data generated by gene set enrichment analysis in order to identify alterations in individual genes within each gene set tested. Significantly downregulated (P < 0.05) gene signatures were analyzed and a clustered heatmap was generated. Section of heatmap depicting change in MAP3K8 (TPL2) and MAP2K1 (MEK1) expression is shown with original clustering preserved. TPL2-associated gene set list is provided in Supplemental Table 3. (D) Immunoblot of various commercially available and patient-derived (Pa01C–Pa16C) human PDAC cell lines and 1 normal human pancreatic cell line (HPNE). (E) Correlation plot of p-ERK and TPL2 intensities for PDAC cell lines in D. Two-tailed Pearson correlation (r) analysis was performed. (F) Representative H&E and IHC images of human and murine normal pancreas and PDAC tissue for p-ERK, TPL2, and p-IRAK4. n = 6 sections per stain. Scale bars: 50 μm (for full image [×400 magnification]) and 10 μm (insets).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts