Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The immune response fails to control HIV early in initial virus spread
Lillian B. Cohn, Steven G. Deeks
Lillian B. Cohn, Steven G. Deeks
Published April 27, 2020
Citation Information: J Clin Invest. 2020;130(6):2803-2805. https://doi.org/10.1172/JCI136886.
View: Text | PDF
Commentary

The immune response fails to control HIV early in initial virus spread

  • Text
  • PDF
Abstract

Discontinued antiretroviral therapy (ART) results in uncontrolled HIV replication in most cases. How the virus population that persists during ART escapes immune control remains unknown. In this issue of the JCI, Mitchell and authors investigated plasmacytoid dendritic cells (pDCs) from the blood of individuals living with HIV. After ART was discontinued and as the virus began to spread, an apparently functional pDC response emerged. Notably, these pDCs were initially capable of producing high levels of type I IFN, but rapidly lost this capacity, even before the virus became readily detectable in blood. This study suggests that dysfunctional pDCs are a key initial mechanism associated with poor HIV control. These innate immune responses might be targeted in the emerging efforts to cure HIV disease.

Authors

Lillian B. Cohn, Steven G. Deeks

×

Full Text PDF | Download (294.33 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts