Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis
April M. Adkison, … , Diane G. Kelley, Christine T.N. Pham
April M. Adkison, … , Diane G. Kelley, Christine T.N. Pham
Published February 1, 2002
Citation Information: J Clin Invest. 2002;109(3):363-371. https://doi.org/10.1172/JCI13462.
View: Text | PDF
Article

Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis

  • Text
  • PDF
Abstract

Leukocyte recruitment in inflammation is critical for host defense, but excessive accumulation of inflammatory cells can lead to tissue damage. Neutrophil-derived serine proteases (cathepsin G [CG], neutrophil elastase [NE], and proteinase 3 [PR3]) are expressed specifically in mature neutrophils and are thought to play an important role in inflammation. To investigate the role of these proteases in inflammation, we generated a mouse deficient in dipeptidyl peptidase I (DPPI) and established that DPPI is required for the full activation of CG, NE, and PR3. Although DPPI–/– mice have normal in vitro neutrophil chemotaxis and in vivo neutrophil accumulation during sterile peritonitis, they are protected against acute arthritis induced by passive transfer of monoclonal antibodies against type II collagen. Specifically, there is no accumulation of neutrophils in the joints of DPPI–/– mice. This protective effect correlates with the inactivation of neutrophil-derived serine proteases, since NE–/– × CG–/– mice are equally resistant to arthritis induction by anti-collagen antibodies. In addition, protease-deficient mice have decreased response to zymosan- and immune complex–mediated inflammation in the subcutaneous air pouch. This defect is accompanied by a decrease in local production of TNF-α and IL-1β. These results implicate DPPI and polymorphonuclear neutrophil–derived serine proteases in the regulation of cytokine production at sites of inflammation.

Authors

April M. Adkison, Sofia Z. Raptis, Diane G. Kelley, Christine T.N. Pham

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
In vitro PMN function and in vivo response to thioglycollate in the abse...
In vitro PMN function and in vivo response to thioglycollate in the absence of DPPI. (a) Bone marrow–derived PMNs from WT and DPPI–/– mice were allowed to migrate across a filter in response to 10–4 M fMLP, 2% zymosan-activated rat serum (ZAS), or 3 μg/ml rhIL-8. The number of cells that migrated was expressed as a percentage of total PMNs. Values represent the mean ± SEM of at least three animals. (b) Superoxide production by PMNs in response to PMA, expressed as nmol of O2– generated per 106 PMNs (n > 3 per genotype). The number of PMNs and macrophages recruited in response to intraperitoneal injection of thioglycollate is normal in DPPI–/– mice at 4 hours (c) 24 hours (d) and 120 hours (e).The slightly lower number of macrophages at 120 hours after thioglycollate injection in the DPPI–/– mice did not reach statistical significance (n = 4–5 mice per genotype). Mph, macrophages.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts