Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
KBTBD13 and the ever-expanding sarcomeric universe
Stuart G. Campbell, Steven A. Niederer
Stuart G. Campbell, Steven A. Niederer
Published January 6, 2020
Citation Information: J Clin Invest. 2020;130(2):593-594. https://doi.org/10.1172/JCI132954.
View: Text | PDF
Commentary

KBTBD13 and the ever-expanding sarcomeric universe

  • Text
  • PDF
Abstract

KBTBD13 is a protein expressed in striated muscle whose precise function is unknown. Work by de Winter et al. in this issue of the JCI provides evidence that KBTBD13 localizes to the sarcomere and can directly bind actin. A mutation in KBTBD13 that is associated with nemaline myopathy alters the protein’s effects on actin, apparently increasing thin-filament stiffness and ultimately depressing contractile force and relaxation rate. We discuss here the implications of this new sarcomeric protein, some alternate explanations for the effects of KBTBD13R408C, and the advantages of using computational models to interpret functional data from muscle.

Authors

Stuart G. Campbell, Steven A. Niederer

×

Full Text PDF | Download (81.63 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts