Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

All-trans retinoic acid converts E2F into a transcriptional suppressor and inhibits the growth of normal human bronchial epithelial cells through a retinoic acid receptor- dependent signaling pathway.
H Y Lee, … , W K Hong, J M Kurie
H Y Lee, … , W K Hong, J M Kurie
Published March 1, 1998
Citation Information: J Clin Invest. 1998;101(5):1012-1019. https://doi.org/10.1172/JCI1329.
View: Text | PDF
Research Article

All-trans retinoic acid converts E2F into a transcriptional suppressor and inhibits the growth of normal human bronchial epithelial cells through a retinoic acid receptor- dependent signaling pathway.

  • Text
  • PDF
Abstract

Retinoids, including retinol and retinoic acid derivatives, maintain the normal growth and differentiation of human bronchial epithelial (HBE) cells and are under investigation as agents for lung cancer prevention. In this study, we examined the biologic effects of retinoids on normal HBE cells and the molecular mechanisms of retinoid actions. At a dose of 10(-6) M, all-trans retinoic acid (t-RA) suppressed the proliferation of normal HBE cells, which accumulated in the G0 phase. No evidence of programmed cell death was observed. The class of retinoid nuclear receptor that mediated the growth arrest was explored. Normal HBE cell growth was suppressed by a retinoid that selectively activates retinoic acid receptors but not by one that activates retinoid X receptors. The E2F transcription factor has demonstrated a role in G0 entry through transcriptional suppression of genes that induce cell cycle progression. To investigate the role of E2F in retinoid signaling, transient transfection assays were performed using reporter plasmids containing E2F-binding sites. Findings from these experiments suggested that t-RA treatment converted E2F into a transcriptional suppressor. Supporting this possibility, t-RA inhibited the expression of the E2F target genes B-myb, cyclin A, and cyclin E. Further, t-RA increased the levels of nuclear E2F-4, p107, and p130 and enhanced the binding of E2F-4 to p107, which have been associated with the conversion of E2F into a transcriptional suppressor in other cells. These findings point to retinoic acid receptor- and E2F-dependent pathways as potential mediators of retinoid-induced growth arrest in normal HBE cells and have implications for the use of retinoids in clinical trials on the prevention of lung cancer.

Authors

H Y Lee, D F Dohi, Y H Kim, G L Walsh, U Consoli, M Andreeff, M I Dawson, W K Hong, J M Kurie

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 134 10
PDF 64 12
Citation downloads 98 0
Totals 296 22
Total Views 318
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts