Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Astrocytic neogenin/netrin-1 pathway promotes blood vessel homeostasis and function in mouse cortex
Ling-Ling Yao, Jin-Xia Hu, Qiang Li, Daehoon Lee, Xiao Ren, Jun-Shi Zhang, Dong Sun, Hong-Sheng Zhang, Yong-Gang Wang, Lin Mei, Wen-Cheng Xiong
Ling-Ling Yao, Jin-Xia Hu, Qiang Li, Daehoon Lee, Xiao Ren, Jun-Shi Zhang, Dong Sun, Hong-Sheng Zhang, Yong-Gang Wang, Lin Mei, Wen-Cheng Xiong
View: Text | PDF
Research Article Angiogenesis Neuroscience

Astrocytic neogenin/netrin-1 pathway promotes blood vessel homeostasis and function in mouse cortex

  • Text
  • PDF
Abstract

Astrocytes have multiple functions in the brain, including affecting blood vessel (BV) homeostasis and function. However, the underlying mechanisms remain elusive. Here, we provide evidence that astrocytic neogenin (NEO1), a member of deleted in colorectal cancer (DCC) family netrin receptors, is involved in blood vessel homeostasis and function. Mice with Neo1 depletion in astrocytes exhibited clustered astrocyte distribution and increased BVs in their cortices. These BVs were leaky, with reduced blood flow, disrupted vascular basement membranes (vBMs), decreased pericytes, impaired endothelial cell (EC) barrier, and elevated tip EC proliferation. Increased proliferation was also detected in cultured ECs exposed to the conditioned medium (CM) of NEO1-depleted astrocytes. Further screening for angiogenetic factors in the CM identified netrin-1 (NTN1), whose expression was decreased in NEO1-depleted cortical astrocytes. Adding NTN1 into the CM of NEO1-depleted astrocytes attenuated EC proliferation. Expressing NTN1 in NEO1 mutant cortical astrocytes ameliorated phenotypes in blood-brain barrier (BBB), EC, and astrocyte distribution. NTN1 depletion in astrocytes resulted in BV/BBB deficits in the cortex similar to those in Neo1 mutant mice. In aggregate, these results uncovered an unrecognized pathway, astrocytic NEO1 to NTN1, not only regulating astrocyte distribution, but also promoting cortical BV homeostasis and function.

Authors

Ling-Ling Yao, Jin-Xia Hu, Qiang Li, Daehoon Lee, Xiao Ren, Jun-Shi Zhang, Dong Sun, Hong-Sheng Zhang, Yong-Gang Wang, Lin Mei, Wen-Cheng Xiong

×

Figure 4

Disrupted vBMs and reduced pericytes in NeoGFAP-CreER cortex by coimmunostaining analysis.

Options: View larger image (or click on image) Download as PowerPoint
Disrupted vBMs and reduced pericytes in NeoGFAP-CreER cortex by coimmuno...
(A–F) Coimmunostaining analyses using indicated antibodies. Representative images of laminin-γ1 (A), laminin-α5 (C), and collagen IV (E) are shown. Quantification of laminin-γ1 (B), laminin-α5 (D), and collagen IV (F) in control (Neofl/fl) and NeoGFAP-CreER cortex are presented. In A, arrowheads indicate absent laminin-γ1 coverage and arrows indicate laminin-γ1 aggregates. In E, arrowheads show detached collagen IV from BVs. (G–J) Representative images of desmin (G) and PDGFR-β (I) marked pericytes, and quantification of desmin (H) and PDGFR-β (J) in control (Neofl/fl) and NeoGFAP-CreER cortex are shown. (K and L) Representative images (K) and quantification (L) of active caspase-3+ pericytes in BVs of control and NeoGFAP-CreER cortex. Scale bars: 20 μm. Data are represented as mean ± SEM (n = 5 mice/group). *P < 0.05, Mann-Whitney U test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts