Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Hungry for your alanine: when liver depends on muscle proteolysis
Theresia Sarabhai, Michael Roden
Theresia Sarabhai, Michael Roden
Published September 23, 2019
Citation Information: J Clin Invest. 2019;129(11):4563-4566. https://doi.org/10.1172/JCI131931.
View: Text | PDF
Commentary

Hungry for your alanine: when liver depends on muscle proteolysis

  • Text
  • PDF
Abstract

Fasting requires complex endocrine and metabolic interorgan crosstalk, which involves shifting from glucose to fatty acid oxidation, derived from adipose tissue lipolysis, in order to preserve glucose for the brain. The glucose-alanine (Cahill) cycle is critical for regenerating glucose. In this issue of JCI, Petersen et al. report on their use of an innovative stable isotope tracer method to show that skeletal muscle–derived alanine becomes rate controlling for hepatic mitochondrial oxidation and, in turn, for glucose production during prolonged fasting. These results provide new insight into skeletal muscle–liver metabolic crosstalk during the fed-to-fasting transition in humans.

Authors

Theresia Sarabhai, Michael Roden

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 1,329 21
PDF 249 26
Figure 591 0
Citation downloads 41 0
Totals 2,210 47
Total Views 2,257

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts