Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Revealing the molecular signaling pathways of mucus stasis in cystic fibrosis
Susan E. Birket, Steven M. Rowe
Susan E. Birket, Steven M. Rowe
Published September 16, 2019
Citation Information: J Clin Invest. 2019;129(10):4089-4090. https://doi.org/10.1172/JCI131652.
View: Text | PDF
Commentary

Revealing the molecular signaling pathways of mucus stasis in cystic fibrosis

  • Text
  • PDF
Abstract

Mucus obstruction is a hallmark of cystic fibrosis (CF) airway disease, leading to chronic infection, dysregulated inflammation, and progressive lung disease. As mucus hyperexpression is a key component in the initiation and perpetuation of airway obstruction, the triggers underlying mucin release must be identified and understood. In this issue of the JCI, Chen et al. sought to delineate the mechanisms that allow IL-1α/IL-1β to perpetuate the mucoinflammatory environment characteristic of the CF airway. The authors demonstrated that IL-1α and IL-1β stimulated non-CF human bronchial epithelial (HBE) cells to upregulate and secrete both MUC5B and MUC5AC in a dose-dependent manner, an effect that was neutralized by the inhibition of the IL-1α/IL-1β receptor (IL-1R1). Further experiments using mouse models and excised lung tissue identified contributors that drive a vicious feedback cycle of hyperconcentrated mucus secretions and persistent inflammation in the CF airway, factors that are likely at the nidus of progressive lung disease.

Authors

Susan E. Birket, Steven M. Rowe

×

Full Text PDF | Download (118.49 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts