Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Citations to this article

Revealing the molecular signaling pathways of mucus stasis in cystic fibrosis
Susan E. Birket, Steven M. Rowe
Susan E. Birket, Steven M. Rowe
Published September 16, 2019
Citation Information: J Clin Invest. 2019;129(10):4089-4090. https://doi.org/10.1172/JCI131652.
View: Text | PDF
Commentary

Revealing the molecular signaling pathways of mucus stasis in cystic fibrosis

  • Text
  • PDF
Abstract

Mucus obstruction is a hallmark of cystic fibrosis (CF) airway disease, leading to chronic infection, dysregulated inflammation, and progressive lung disease. As mucus hyperexpression is a key component in the initiation and perpetuation of airway obstruction, the triggers underlying mucin release must be identified and understood. In this issue of the JCI, Chen et al. sought to delineate the mechanisms that allow IL-1α/IL-1β to perpetuate the mucoinflammatory environment characteristic of the CF airway. The authors demonstrated that IL-1α and IL-1β stimulated non-CF human bronchial epithelial (HBE) cells to upregulate and secrete both MUC5B and MUC5AC in a dose-dependent manner, an effect that was neutralized by the inhibition of the IL-1α/IL-1β receptor (IL-1R1). Further experiments using mouse models and excised lung tissue identified contributors that drive a vicious feedback cycle of hyperconcentrated mucus secretions and persistent inflammation in the CF airway, factors that are likely at the nidus of progressive lung disease.

Authors

Susan E. Birket, Steven M. Rowe

×

Loading citation information...
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts