Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway
Stefanie Dimmeler, Alexandra Aicher, Mariuca Vasa, Christiane Mildner-Rihm, Klaudia Adler, Michaela Tiemann, Hartmut Rütten, Stephan Fichtlscherer, Hans Martin, Andreas M. Zeiher
Stefanie Dimmeler, Alexandra Aicher, Mariuca Vasa, Christiane Mildner-Rihm, Klaudia Adler, Michaela Tiemann, Hartmut Rütten, Stephan Fichtlscherer, Hans Martin, Andreas M. Zeiher
View: Text | PDF
Article

HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway

  • Text
  • PDF
Abstract

HMG-CoA reductase inhibitors (statins) have been developed as lipid-lowering drugs and are well established to reduce morbidity and mortality from coronary artery disease. Here we demonstrate that statins potently augment endothelial progenitor cell differentiation in mononuclear cells and CD34-positive hematopoietic stem cells isolated from peripheral blood. Moreover, treatment of mice with statins increased c-kit+/Sca-1+–positive hematopoietic stem cells in the bone marrow and further elevated the number of differentiated endothelial progenitor cells (EPCs). Statins induce EPC differentiation via the PI 3-kinase/Akt (PI3K/Akt) pathway as demonstrated by the inhibitory effect of pharmacological PI3K blockers or overexpression of a dominant negative Akt construct. Similarly, the potent angiogenic growth factor VEGF requires Akt to augment EPC numbers, suggesting an essential role for Akt in regulating hematopoietic progenitor cell differentiation. Given that statins are at least as potent as VEGF in increasing EPC differentiation, augmentation of circulating EPC might importantly contribute to the well-established beneficial effects of statins in patients with coronary artery disease.

Authors

Stefanie Dimmeler, Alexandra Aicher, Mariuca Vasa, Christiane Mildner-Rihm, Klaudia Adler, Michaela Tiemann, Hartmut Rütten, Stephan Fichtlscherer, Hans Martin, Andreas M. Zeiher

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Statin- and VEGF-induced EPC differentiation is mediated by the PI3K/Akt...
Statin- and VEGF-induced EPC differentiation is mediated by the PI3K/Akt pathway. (a and b) MNCs were incubated with atorvastatin (1 μM) or VEGF (100 ng/ml) and the respective inhibitors (Ly294002, 10 μM; wortmannin, 10 nM; PD98059, 10 μM) for 24 hours. Adherent DiLDL/lectin-positive cells were counted. Neither the substances alone nor the solvents had any toxic effect (data not shown). Data are mean ± SEM, n = 3–6, *P < 0.05 versus VEGF or AT. (c) Western blot against phosphorylated Akt (Ser 473) of MNCs incubated with atorvastatin for the respective time points. Equal loading was confirmed by reprobe of the membranes with total Akt. Protein isolation and Western blot analysis was performed as outlined previously (25). A representative experiment is shown (n = 3). (d and e) MNCs were transfected with pcDNA3.1.-GFP as control vector or pcDNA3.1. dominant negative (dom. neg.) Akt and were incubated with atorvastatin (1 μM) or recombinant hVEGF (100 ng/ml) for 24 hours. Adherent DiLDL/lectin-positive cells were counted. Atorvastatin was similarly effective in empty vector–transfected cells compared with GFP. Data are expressed as mean ± SEM, n = 4–6, *P < 0.05 versus control vector plus VEGF, **P < 0.05 versus control vector plus atorvastatin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts