Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Less burn, more fat: electronic cigarettes and pulmonary lipid homeostasis
Aran Singanayagam, Robert J. Snelgrove
Aran Singanayagam, Robert J. Snelgrove
Published September 4, 2019
Citation Information: J Clin Invest. 2019;129(10):4077-4079. https://doi.org/10.1172/JCI131336.
View: Text | PDF
Commentary

Less burn, more fat: electronic cigarettes and pulmonary lipid homeostasis

  • Text
  • PDF
Abstract

Electronic nicotine delivery systems (ENDS) are rapidly increasing in popularity due to the perception that they may represent a safe alternative to conventional cigarettes. However, a growing body of evidence indicates that ENDS exposure can disrupt maintenance of pulmonary immune homeostasis and antimicrobial immunity. In this issue of the JCI, Madison et al. demonstrate that in mice, chronic ENDS exposure induces profound alterations in lipid homeostasis. ENDS-exposed mice showed irregularities in the surfactant-secreting lamellar bodies within type 2 alveolar cells and increased intracellular phospholipid accumulation within alveolar macrophages. Moreover, ENDS-exposed mice displayed greater inflammation and tissue damage in response to influenza A, which may be due to downregulated expression of a viral pattern–recognition receptor in alveolar macrophages. Collectively, the results of this study identify previously unrecognized adverse effects of ENDS exposure on pulmonary lipid metabolism, although the implication of these effects on long-term respiratory health requires future exploration.

Authors

Aran Singanayagam, Robert J. Snelgrove

×

Full Text PDF | Download (124.80 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts