Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
DNA damage response protects against progressive kidney disease
Bruce A. Molitoris
Bruce A. Molitoris
Published October 7, 2019
Citation Information: J Clin Invest. 2019;129(11):4574-4575. https://doi.org/10.1172/JCI131171.
View: Text | PDF
Commentary

DNA damage response protects against progressive kidney disease

  • Text
  • PDF
Abstract

The pathophysiology of cellular injury and repair has been extensively studied in acute kidney injury (AKI) for more than 70 years. Although a great deal of knowledge has been generated, a debate over the importance of repairing damaged cells versus replacing them by proliferation remains. In this issue of the JCI, Kishi et al. demonstrate that following kidney epithelial cell injury, DNA repair, rather than cell proliferation, plays the central role in recovery and longevity by minimizing apoptosis, G2/M cell-cycle arrest, and subsequent fibrosis. This has important therapeutic implications and highlights the need for more sensitive techniques to evaluate functional, structural, and molecular recovery following injury.

Authors

Bruce A. Molitoris

×

Full Text PDF | Download (91.17 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts