Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury
Wenjing Sun, … , Juan Peng, Andrea Tedeschi
Wenjing Sun, … , Juan Peng, Andrea Tedeschi
Published December 3, 2019
Citation Information: J Clin Invest. 2020;130(1):345-358. https://doi.org/10.1172/JCI130391.
View: Text | PDF
Research Article Neuroscience

Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury

  • Text
  • PDF
Abstract

Axon regeneration failure causes neurological deficits and long-term disability after spinal cord injury (SCI). Here, we found that the α2δ2 subunit of voltage-gated calcium channels negatively regulates axon growth and regeneration of corticospinal neurons, the cells that originate the corticospinal tract. Increased α2δ2 expression in corticospinal neurons contributed to loss of corticospinal regrowth ability during postnatal development and after SCI. In contrast, α2δ2 pharmacological blockade through gabapentin administration promoted corticospinal structural plasticity and regeneration in adulthood. Using an optogenetic strategy combined with in vivo electrophysiological recording, we demonstrated that regenerating corticospinal axons functionally integrate into spinal circuits. Mice administered gabapentin recovered upper extremity function after cervical SCI. Importantly, such recovery relies on reorganization of the corticospinal pathway, as chemogenetic silencing of injured corticospinal neurons transiently abrogated recovery. Thus, targeting α2δ2 with a clinically relevant treatment strategy aids repair of motor circuits after SCI.

Authors

Wenjing Sun, Molly J.E. Larson, Conrad M. Kiyoshi, Alexander J. Annett, William A. Stalker, Juan Peng, Andrea Tedeschi

×

Figure 1

α2δ2 is expressed in corticospinal neurons and subjected to developmental and injury-dependent upregulation.

Options: View larger image (or click on image) Download as PowerPoint
α2δ2 is expressed in corticospinal neurons and subjected to developmenta...
(A) Schematic of retrograde labeling of corticospinal neurons. (B) Representative fluorescence images of corticospinal neurons identified by retrograde labeling after Fluoro-Gold injections into the cervical spinal cords of adult GFP-M mice. Sagittal sections of the mouse brain were immunostained with α2δ2 antibody (n = 4 independent replicates). Scale bar: 50 μm. (C) Immunoblot shows α2δ2 expression in the mouse sensory-motor cortex during postnatal development. Under reducing conditions, the α2δ2 antibody recognizes 2 bands at approximately 130 and 105 kDa. Tuj1 is used as loading control. (D) Quantification of C. Data normalized using loading control (linear trend test **P < 0.01, n = 3 biological replicates). (E) Representative fluorescence images of corticospinal neurons from mouse brains at different ages. Scale bar: 50 μm. (F) Quantification of E. Box plot (minimum to maximum) and line at median (1-way ANOVA followed by Dunnett post test *P < 0.05; **P < 0.01; P7 n = 5, P14 n = 3, and P28 n = 3 mice, 60–95 neurons per condition). (G) Raster plots show spontaneous firing within layer V of the sensory-motor cortex at different stages of brain development. (H) Quantification of G. Mean and SEM (linear trend test *P < 0.05; P7 n = 5, P14 n = 7, and P28 n = 8 mice). (I) Schematic representation of C5 SCI experimental model. (J) Representative fluorescence images of retrogradely labeled corticospinal neurons (yellow arrows) 7 days after C5 SCI. DPO, days after operation. Sagittal sections of the mouse brain (right hemisphere) were immunostained with α2δ2 antibody. Scale bar: 50 μm. (K) Quantification of J. Mean and SEM (unpaired 2-tailed Student’s t test **P < 0.01; sham n = 4 and SCI n = 4 mice, 229–302 neurons per condition).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts