Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Breaking barriers for T cells by targeting the EPHA2/TGF-β/COX-2 axis in pancreatic cancer
Jose R. Conejo-Garcia
Jose R. Conejo-Garcia
Published July 29, 2019
Citation Information: J Clin Invest. 2019;129(9):3521-3523. https://doi.org/10.1172/JCI130316.
View: Text | PDF
Commentary

Breaking barriers for T cells by targeting the EPHA2/TGF-β/COX-2 axis in pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma is projected to become the second-leading cause of cancer-related death and is largely resistant to immunotherapies. The tumor microenvironment, largely composed of heterogeneous myeloid cells, creates a physical, metabolic, and immunosuppressive barrier that prevents T cells from infiltrating cancer beds. In this issue of the JCI, Markosyan and colleagues have reported a tumor-intrinsic mechanism that excludes T cells from the vicinity of tumor cells. They showed that a receptor tyrosine kinase, ephrin-A receptor 2 (EPHA2), regulates prostaglandin endoperoxide synthase 2 (PTGS2) (encodes COX-2) expression in a TGF-β signaling–dependent manner. Genetic ablation of Epha2 or Ptgs2 in preclinical models or pharmacological inhibition of COX-2 elicited the transformation of this immunosuppressive microenvironment into a T cell–permissive milieu. Consequent T cell relocation rendered this immunoresistant malignancy responsive to combinations of checkpoint blockers and CD40 agonists. Because the association between T cell infiltration and the EPHA2/TGF-β/COX-2 axis is supported by independent clinical data, these results provide a rationale for ensuing clinical trials aimed at incorporating pancreatic cancer into the range of immunotherapy-responsive tumors.

Authors

Jose R. Conejo-Garcia

×

Figure 1

Tumor cell–intrinsic TGF-β signaling drives the upregulation of EPHA2 on the tumor cell surface, which promotes the overexpression of COX-2.

Options: View larger image (or click on image) Download as PowerPoint
Tumor cell–intrinsic TGF-β signaling drives the upregulation of EPHA2 on...
COX-2 activity governs the orchestration of a pancreatic cancer microenvironment characterized by the accumulation of cells of the granulocytic lineage that, along with macrophages, fibroblasts, and the deposition of extracellular matrix (ECM), prevents T cell infiltration. Genetic ablation of TGF-β signaling, Epha2, or Ptgs2 (COX-2) transforms this microenvironment into one permissive to T cell trafficking, which is primarily associated with a decrease in granulocytes (likely gMDSC). Accordingly, pharmacological inhibition of COX-2 renders highly resistant pancreatic tumors sensitive to immunotherapeutic interventions.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts