Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Anemia lurking in introns
Narla Mohandas
Narla Mohandas
Published June 4, 2019
Citation Information: J Clin Invest. 2019;129(7):2655-2657. https://doi.org/10.1172/JCI129443.
View: Text | PDF
Commentary

Anemia lurking in introns

  • Text
  • PDF
Abstract

Anemia is defined by low levels of circulating hemoglobin, resulting in insufficient tissue oxygenation. This condition results from both genetic and nutritional factors and affects more than a billion people worldwide. For the inherited anemias, progress made over the last 40 years has increased our understanding of the structural basis for normal red cell membrane function and allowed definition of the genetic and pathophysiological bases of many human RBC membrane disorders. Despite these advances, there are continued uncertainties in the genotype-phenotype relationship in cases of severe, membrane-linked anemia. In this issue of the JCI, Gallagher and colleagues have identified a severe form of inherited anemia that results from aberrant splicing of α-spectrin, which in turn leads to abnormal erythrocyte membrane structure and function. The identification and characterization of this splicing-associated genetic disease will facilitate diagnosis and treatment of severe anemia in affected patients. These findings not only improve understanding of red cell disorders, they are likely to impact many disciplines, as the disease-associated alternate branch point utilization defined in the report may be the underlying etiology for many other inherited or acquired disorders.

Authors

Narla Mohandas

×

Full Text PDF | Download (2.01 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts