Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases
Sofia Khan, … , Anu Suomalainen, Laura L. Elo
Sofia Khan, … , Anu Suomalainen, Laura L. Elo
Published January 2, 2020
Citation Information: J Clin Invest. 2020;130(1):20-28. https://doi.org/10.1172/JCI129202.
View: Text | PDF
Review Series

Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases

  • Text
  • PDF
Abstract

High-throughput technologies for genomics, transcriptomics, proteomics, and metabolomics, and integrative analysis of these data, enable new, systems-level insights into disease pathogenesis. Mitochondrial diseases are an excellent target for hypothesis-generating omics approaches, as the disease group is mechanistically exceptionally complex. Although the genetic background in mitochondrial diseases is in either the nuclear or the mitochondrial genome, the typical downstream effect is dysfunction of the mitochondrial respiratory chain. However, the clinical manifestations show unprecedented variability, including either systemic or tissue-specific effects across multiple organ systems, with mild to severe symptoms, and occurring at any age. So far, the omics approaches have provided mechanistic understanding of tissue-specificity and potential treatment options for mitochondrial diseases, such as metabolome remodeling. However, no curative treatments exist, suggesting that novel approaches are needed. In this Review, we discuss omics approaches and discoveries with the potential to elucidate mechanisms of and therapies for mitochondrial diseases.

Authors

Sofia Khan, Gulayse Ince-Dunn, Anu Suomalainen, Laura L. Elo

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 991 479
PDF 157 62
Figure 158 1
Table 50 0
Citation downloads 76 0
Totals 1,432 542
Total Views 1,974
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts