Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The promise and reality of therapeutic discovery from large cohorts
Eugene Melamud, … , Nick van Bruggen, Garret A. FitzGerald
Eugene Melamud, … , Nick van Bruggen, Garret A. FitzGerald
Published January 13, 2020
Citation Information: J Clin Invest. 2020;130(2):575-581. https://doi.org/10.1172/JCI129196.
View: Text | PDF
Review Series

The promise and reality of therapeutic discovery from large cohorts

  • Text
  • PDF
Abstract

Technological advances in rapid data acquisition have transformed medical biology into a data mining field, where new data sets are routinely dissected and analyzed by statistical models of ever-increasing complexity. Many hypotheses can be generated and tested within a single large data set, and even small effects can be statistically discriminated from a sea of noise. On the other hand, the development of therapeutic interventions moves at a much slower pace. They are determined from carefully randomized and well-controlled experiments with explicitly stated outcomes as the principal mechanism by which a single hypothesis is tested. In this paradigm, only a small fraction of interventions can be tested, and an even smaller fraction are ultimately deemed therapeutically successful. In this Review, we propose strategies to leverage large-cohort data to inform the selection of targets and the design of randomized trials of novel therapeutics. Ultimately, the incorporation of big data and experimental medicine approaches should aim to reduce the failure rate of clinical trials as well as expedite and lower the cost of drug development.

Authors

Eugene Melamud, D. Leland Taylor, Anurag Sethi, Madeleine Cule, Anastasia Baryshnikova, Danish Saleheen, Nick van Bruggen, Garret A. FitzGerald

×

Figure 2

Use of deep phenotyping to limit the number of intervention hypotheses.

Options: View larger image (or click on image) Download as PowerPoint
Use of deep phenotyping to limit the number of intervention hypotheses.
...
Association between genetic variation, intermediate traits, and outcomes. The large number of correlation connections (gray) can be reduced by introduction of sparsity into a network structure via Bayesian network inference (blue). Spurious correlations can be removed if outcomes are explained better by a different path through the network. Mendelian randomization (red) can also identify causal connections by using genetic variation within populations. Interventions on a red node or a blue node are more likely to succeed, as they mediate a path to a disease.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts