Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria
Jacob S. Stevens, Qais Al-Awqati
Jacob S. Stevens, Qais Al-Awqati
Published May 20, 2019
Citation Information: J Clin Invest. 2019;129(6):2201-2204. https://doi.org/10.1172/JCI128709.
View: Text | PDF
Commentary

Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria

  • Text
  • PDF
Abstract

Excessive excretion of oxalate in the urine results in the formation of calcium oxalate crystals and subsequent kidney stone formation. Severe forms of hyperoxaluria, including genetic forms and those that result from ethylene glycol poisoning, can result in end-stage renal disease. Therapeutic interventions are limited and often rely on dietary intervention. In this issue of the JCI, Le Dudal and colleagues demonstrate that the lactate dehydrogenase 5 inhibitor (LDH5) stiripentol reduces urinary oxalate excretion. Importantly, stiripentol treatment of a single individual with primary hyperoxaluria reduced the urinary oxalate excretion. Together, these results support further evaluation of LDH5 as a therapeutic target for hyperoxaluria.

Authors

Jacob S. Stevens, Qais Al-Awqati

×

Full Text PDF | Download (385.52 KB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts