Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired activation of murine platelets lacking Gαi2
Hans-Michael Jantzen, … , Pamela B. Conley, Richard M. Mortensen
Hans-Michael Jantzen, … , Pamela B. Conley, Richard M. Mortensen
Published August 1, 2001
Citation Information: J Clin Invest. 2001;108(3):477-483. https://doi.org/10.1172/JCI12818.
View: Text | PDF
Article

Impaired activation of murine platelets lacking Gαi2

  • Text
  • PDF
Abstract

The intracellular signaling pathways by which G protein–coupled receptors on the platelet surface initiate aggregation, a critical process for hemostasis and thrombosis, are not well understood. In particular, the contribution of the Gi pathway has not been directly addressed. We have investigated the activation of platelets from mice in which the gene for the predominant platelet Gαi subtype, Gαi2, has been disrupted. In intact platelets from Gαi2-deficient mice, the inhibition of adenylyl cyclase by ADP was found to be partially impaired compared with wild-type platelets. Moreover, both ADP-dependent platelet aggregation and the activation of the integrin αIIbβ3 (GPIIb-IIIa) were strongly reduced in platelets from Gαi2-deficient mice. In addition, Gαi2-deficient platelets displayed impaired activation at low thrombin concentrations. This defect was mimicked by blocking the adenylyl cyclase–coupled platelet ADP receptor (P2Y12) on wild-type platelets with a selective antagonist. These observations suggest that Gαi2 is involved in the inhibition of platelet adenylyl cyclase in vivo and is a critical component of the signaling pathway for integrin activation by ADP, resulting in platelet aggregation. In addition, thrombin-dependent activation of mouse platelets is mediated, at least in part, by secreted ADP acting on the Gαi2–linked ADP receptor.

Authors

Hans-Michael Jantzen, David S. Milstone, Laurent Gousset, Pamela B. Conley, Richard M. Mortensen

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 502 8
PDF 63 9
Figure 258 2
Citation downloads 82 0
Totals 905 19
Total Views 924
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts