Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling
Sonali Munshaw, Susann Bruche, Andia N. Redpath, Alisha Jones, Jyoti Patel, Karina N. Dubé, Regent Lee, Svenja S. Hester, Rachel Davies, Giles Neal, Ashok Handa, Michael Sattler, Roman Fischer, Keith M. Channon, Nicola Smart
Sonali Munshaw, Susann Bruche, Andia N. Redpath, Alisha Jones, Jyoti Patel, Karina N. Dubé, Regent Lee, Svenja S. Hester, Rachel Davies, Giles Neal, Ashok Handa, Michael Sattler, Roman Fischer, Keith M. Channon, Nicola Smart
View: Text | PDF
Research Article Vascular biology

Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling

  • Text
  • PDF
Abstract

Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II–induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tβ4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1–PDGFR-β. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFR-β antagonist Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor–controlled VSMC phenotypic modulation underlying aortic disease progression.

Authors

Sonali Munshaw, Susann Bruche, Andia N. Redpath, Alisha Jones, Jyoti Patel, Karina N. Dubé, Regent Lee, Svenja S. Hester, Rachel Davies, Giles Neal, Ashok Handa, Michael Sattler, Roman Fischer, Keith M. Channon, Nicola Smart

×

Figure 4

Tβ4 interacts with LRP1 in human arterial smooth muscle cells.

Options: View larger image (or click on image) Download as PowerPoint
Tβ4 interacts with LRP1 in human arterial smooth muscle cells.
(A) Immun...
(A) Immunofluorescence, with quantification shown in Supplemental Figure 6, to assess Tβ4 and LRP1 expression in human aorta from AAA patients and matched omental artery from the same patients (n = 10); these readouts were additionally measured in human tibial arteries (n = 4). (B) Qualitative correlation by immunofluorescence of Tβ4 with caldesmon levels in adjacent AAA sections; Tβ4 levels did not appear to correlate with αSMA in the same sections. The extent of activated (phosphorylated) PDGFR-β (C) and Tβ4-LRP1 PLA (D) in human AAA and omental and tibial arteries, quantified in Supplemental Figure 6. Scale bars: A and D: 20 μm (scale bar in D applies to C); B: 50 μm. Int: intima; Med: media; Adv; adventitia.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts