Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Elevation of plasma tRNA fragments precedes seizures in human epilepsy
Marion C. Hogg, … , David C. Henshall, Jochen H.M. Prehn
Marion C. Hogg, … , David C. Henshall, Jochen H.M. Prehn
Published April 30, 2019
Citation Information: J Clin Invest. 2019;129(7):2946-2951. https://doi.org/10.1172/JCI126346.
View: Text | PDF
Concise Communication Neuroscience

Elevation of plasma tRNA fragments precedes seizures in human epilepsy

  • Text
  • PDF
Abstract

Transfer RNAs (tRNAs) are a major class of noncoding RNA. Stress-induced cleavage of tRNA is highly conserved and results in tRNA fragments. Here, we found that specific tRNA fragments in plasma are associated with epilepsy. Small RNA-Seq of plasma samples collected during video EEG monitoring of patients with focal epilepsy identified significant differences in 3 tRNA fragments (5′GlyGCC, 5′AlaTGC, and 5′GluCTC) compared with samples from healthy controls. The levels of these tRNA fragments were higher in pre-seizure than in post-seizure samples, suggesting that they may serve as biomarkers of seizure risk in patients with epilepsy. In vitro studies confirmed that production and extracellular release of tRNA fragments were lower after epileptiform-like activity in hippocampal neurons. We designed PCR-based assays to quantify tRNA fragments in a cohort of pre- and post-seizure plasma samples from patients with focal epilepsy and from healthy controls. Receiver operating characteristic analysis indicated that tRNA fragments potently distinguished pre- from post-seizure patients. Elevated levels of tRNA fragments were not detected in patients with psychogenic nonepileptic seizures and did not result from medication tapering. This study potentially identifies a new class of epilepsy biomarker and reveals the possible existence of prodromal molecular patterns in blood that could be used to predict seizure risk.

Authors

Marion C. Hogg, Rana Raoof, Hany El Naggar, Naser Monsefi, Norman Delanty, Donncha F. O’Brien, Sebastian Bauer, Felix Rosenow, David C. Henshall, Jochen H.M. Prehn

×

Full Text PDF | Download (2.22 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts