Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells
De-Huang Guo, … , Babak Baban, Alexis M. Stranahan
De-Huang Guo, … , Babak Baban, Alexis M. Stranahan
Published January 14, 2020
Citation Information: J Clin Invest. 2020;130(4):1961-1976. https://doi.org/10.1172/JCI126078.
View: Text | PDF
Research Article Immunology Neuroscience

Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells

  • Text
  • PDF
Abstract

Induction of the inflammasome protein cryopyrin (NLRP3) in visceral adipose tissue (VAT) promotes release of the proinflammatory cytokine IL-1β in obesity. Although this mechanism contributes to peripheral metabolic dysfunction, effects on the brain remain unexplored. We investigated whether visceral adipose NLRP3 impairs cognition by activating microglial IL-1 receptor 1 (IL-1R1). After observing protection against obesity-induced neuroinflammation and cognitive impairment in NLRP3-KO mice, we transplanted VAT from obese WT or NLRP3-KO donors into lean recipient mice. Transplantation of VAT from a WT donor (TRANSWT) increased hippocampal IL-1β and impaired cognition, but VAT transplants from comparably obese NLRP3-KO donors (TRANSKO) had no effect. Visceral adipose NLRP3 was required for deficits in long-term potentiation (LTP) in transplant recipients, and LTP impairment in TRANSWT mice was IL-1 dependent. Flow cytometric and gene expression analyses revealed that VAT transplantation recapitulated the effects of obesity on microglial activation and IL-1β gene expression, and visualization of hippocampal microglia revealed similar effects in vivo. Inducible ablation of IL-1R1 in CX3CR1-expressing cells eliminated cognitive impairment in mice with dietary obesity and in transplant recipients and restored immunoquiescence in hippocampal microglia. These results indicate that visceral adipose NLRP3 impairs memory via IL-1–mediated microglial activation and suggest that NLRP3/IL-1β signaling may underlie correlations between visceral adiposity and cognitive impairment in humans.

Authors

De-Huang Guo, Masaki Yamamoto, Caterina M. Hernandez, Hesam Khodadadi, Babak Baban, Alexis M. Stranahan

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 5,656 160
PDF 1,065 250
Figure 872 0
Supplemental data 203 2
Citation downloads 78 0
Totals 7,874 412
Total Views 8,286

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts