Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
ARHGEF1 deficiency reveals Gα13-associated GPCRs are critical regulators of human lymphocyte function
Divij Mathew, … , Kimberly N. Kremer, Raul M. Torres
Divij Mathew, … , Kimberly N. Kremer, Raul M. Torres
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):965-968. https://doi.org/10.1172/JCI125893.
View: Text | PDF
Commentary

ARHGEF1 deficiency reveals Gα13-associated GPCRs are critical regulators of human lymphocyte function

  • Text
  • PDF
Abstract

Primary antibody deficiencies are the most common immunodeficiencies in humans; however, identification of the underlying genetic and biochemical basis for these diseases is often difficult, given that these deficiencies typically involve complex genetic etiologies. In this issue of the JCI, Bouafia et al. performed whole-exome sequencing on a pair of siblings with primary antibody deficiencies and identified genetic mutations that result in a deficiency of ARHGEF1, a hematopoietic intracellular signaling molecule that transmits signals from GPCRs. ARHGEF1-deficient lymphocytes from the affected siblings exhibited important functional deficits that indicate that loss of ARHGEF1 accounts for the observed primary antibody deficiency, which manifests in an inability to mount antibody responses to vaccines and pathogens. Thus, this report demonstrates an important role for ARHGEF1 in GPCR signal transduction required for appropriate adaptive immune responses in humans.

Authors

Divij Mathew, Kimberly N. Kremer, Raul M. Torres

×

Full Text PDF | Download (2.01 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts