Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The gut microbiota and graft-versus-host disease
David N. Fredricks
David N. Fredricks
Published May 1, 2019
Citation Information: J Clin Invest. 2019;129(5):1808-1817. https://doi.org/10.1172/JCI125797.
View: Text | PDF
Review

The gut microbiota and graft-versus-host disease

  • Text
  • PDF
Abstract

Graft-versus-host disease (GvHD) is a common complication of hematopoietic cell transplantation that negatively impacts quality of life in recipients and can be fatal. Animal experiments and human studies provide compelling evidence that the gut microbiota is associated with risk of GvHD, but the nature of this relationship remains unclear. If the gut microbiota is a driver of GvHD pathogenesis, then manipulation of the gut microbiota offers one promising avenue for preventing or treating this common condition, and antibiotic stewardship efforts in transplantation may help preserve the indigenous microbiota and modulate immune responses to benefit the host.

Authors

David N. Fredricks

×

Figure 1

Models of intestinal environments affecting GvHD development.

Options: View larger image (or click on image) Download as PowerPoint
Models of intestinal environments affecting GvHD development.
(A) Effect...
(A) Effects of conditioning. Conditioning chemotherapy and radiation damage cells in the intestinal epithelium (including IECs, thereby compromising barrier function), intestinal stem cells (impairing epithelial regeneration), Paneth cells (decreasing the antimicrobial peptide [AMPs] production that maintains intestinal bacterial populations), and goblet cells (depleting the mucus barrier separating bacteria from epithelium and immune cells). Coincident with conditioning, patients undergoing HCT typically receive systemic broad-spectrum antibiotics intended to prevent bacterial infections during neutropenia; these also disrupt gut microbiota and reduce bacterial diversity. (B) GvHD pathogenesis. Intestinal dysbiosis arising from antibiotics, altered diet, and tissue damage in HCT recipients may deplete riboflavin metabolites and SCFAs (e.g., butyrate), impairing antiinflammatory MAIT cell activation and Treg stimulation, respectively. Depletion of butyrate, the primary energy source for repair-promoting IECs, may also contribute to epithelial defects, allowing ingress of proinflammatory bacteria and MAMPs. Pattern recognition receptors on immune cells like DCs recognize bacteria and MAMPs, eliciting Th1 and Th17 responses that enhance tissue damage. Reduced bacterial diversity may correlate with reduced bile acid metabolism and increased intestinal bile acids, affecting cell function and viability. Overgrowth of mucin-degrading bacteria (e.g., Akkermansia) in the absence of complex dietary carbohydrates may further deplete the mucus barrier, permitting direct bacterial contact with the epithelial surface, activating immune cells. The net effect constitutes a disruption in the gut barrier with inflammation that may trigger and sustain GvHD. (C) Absence of GvHD. Preservation of the gut microbiota, including bacteria with key metabolic properties (riboflavin metabolism, SCFA production), dampens inflammation via MAIT cells and Tregs. Bacterial butyrate production, normal bile acid metabolism, and the absence of mucin-degrading bacteria facilitate healing of the gut epithelium. An intact barrier discourages bacterial translocation and MAMPs in the mucosa, resulting in reduced inflammation and reduced alloantigen presentation to T cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts