Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
TGF-β signaling underlies hematopoietic dysfunction and bone marrow failure in Shwachman-Diamond syndrome
Cailin E. Joyce, … , Akiko Shimamura, Carl D. Novina
Cailin E. Joyce, … , Akiko Shimamura, Carl D. Novina
Published June 18, 2019
Citation Information: J Clin Invest. 2019;129(9):3821-3826. https://doi.org/10.1172/JCI125375.
View: Text | PDF
Concise Communication Hematology

TGF-β signaling underlies hematopoietic dysfunction and bone marrow failure in Shwachman-Diamond syndrome

  • Text
  • PDF
Abstract

Shwachman-Diamond syndrome (SDS) is a rare and clinically heterogeneous bone marrow (BM) failure syndrome caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. Although SDS was described more than 50 years ago, its molecular pathogenesis is poorly understood due, in part, to the rarity and heterogeneity of the affected hematopoietic progenitors. To address this, we used single-cell RNA sequencing to profile scant hematopoietic stem and progenitor cells from patients with SDS. We generated a single-cell map of early lineage commitment and found that SDS hematopoiesis was left-shifted with selective loss of granulocyte-monocyte progenitors. Transcriptional targets of transforming growth factor beta (TGF-β) were dysregulated in SDS hematopoietic stem cells and multipotent progenitors, but not in lineage-committed progenitors. TGF-β inhibitors (AVID200 and SD208) increased hematopoietic colony formation of SDS patient BM. Finally, TGF-β3 and other TGF-β pathway members were elevated in SDS patient blood plasma. These data establish the TGF-β pathway as a candidate biomarker and therapeutic target in SDS and translate insights from single-cell biology into a potential therapy.

Authors

Cailin E. Joyce, Assieh Saadatpour, Melisa Ruiz-Gutierrez, Ozge Vargel Bolukbasi, Lan Jiang, Dolly D. Thomas, Sarah Young, Inga Hofmann, Colin A. Sieff, Kasiani C. Myers, Jennifer Whangbo, Towia A. Libermann, Chad Nusbaum, Guo-Cheng Yuan, Akiko Shimamura, Carl D. Novina

×

Supplemental Tables 1-5 - Download (318.99 KB)

No preview available for this file type
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts