Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Osteopontin controls immunosuppression in the tumor microenvironment
Michael R. Shurin
Michael R. Shurin
Published November 5, 2018
Citation Information: J Clin Invest. 2018;128(12):5209-5212. https://doi.org/10.1172/JCI124918.
View: Text | PDF
Commentary

Osteopontin controls immunosuppression in the tumor microenvironment

  • Text
  • PDF
Abstract

Cancer cells evade the immune system through a variety of different mechanisms, including the inhibition of antitumor effector T cells via checkpoint ligand–receptor interaction. Moreover, studies have shown that blocking these checkpoint pathways can reinvigorate the antitumor immunity, thereby prompting the development of numerous checkpoint immunotherapies, several of which are now being approved to treat multiple types of cancer. However, only a fraction of patients achieves promising long-term outcomes in response to checkpoint inhibition, suggesting the existence of additional unknown tumor-induced immunosuppressive pathways. In this issue of the JCI, Klement and colleagues describe an additional pathway of T cell inhibition in cancer. Specifically, the authors demonstrate that downregulation of IRF8, a molecular determinant of apoptotic resistance, in tumor cells aborts repression of osteopontin, which in turn binds to its physiological receptor CD44 on activated T cells and suppresses their activation. These results suggest that osteopontin may act as another immune checkpoint and may serve as a target to expand the number of patients who respond to immune checkpoint inhibitor therapy.

Authors

Michael R. Shurin

×

Full Text PDF | Download (1015.69 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts