Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
ENTPD-1 disrupts inflammasome IL-1β–driven venous thrombosis
Vinita Yadav, … , David J. Pinsky, Yogendra Kanthi
Vinita Yadav, … , David J. Pinsky, Yogendra Kanthi
Published April 16, 2019
Citation Information: J Clin Invest. 2019;129(7):2872-2877. https://doi.org/10.1172/JCI124804.
View: Text | PDF
Concise Communication Inflammation Vascular biology

ENTPD-1 disrupts inflammasome IL-1β–driven venous thrombosis

  • Text
  • PDF
Abstract

Deep vein thrombosis (DVT), caused by alterations in venous homeostasis, is the third most common cause of cardiovascular mortality, however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells. Here, we evaluated the contribution of CD39 to venous thrombosis in a restricted-flow model of murine inferior vena cava stenosis. CD39 deficiency conferred a greater than 2-fold increase in venous thrombogenesis, characterized by increased leukocyte engagement, neutrophil extracellular trap formation, fibrin, and local activation of tissue factor in the thrombotic milieu. This venous thrombogenesis was orchestrated by increased phosphorylation of the p65 subunit of NF-κB, activation of the NLR family pyrin domain–containing 3 (NLRP3) inflammasome, and IL-1β release in CD39-deficient mice. Substantiating these findings, an IL-1β–neutralizing antibody or the IL-1 receptor inhibitor anakinra attenuated the thrombosis risk in CD39-deficient mice. These data demonstrate that IL-1β is a key accelerant of venous thrombo-inflammation, which can be suppressed by CD39. CD39 inhibits in vivo crosstalk between inflammation and coagulation pathways and is a critical vascular checkpoint in venous thrombosis.

Authors

Vinita Yadav, Liguo Chi, Raymond Zhao, Benjamin E. Tourdot, Srilakshmi Yalavarthi, Benjamin N. Jacobs, Alison Banka, Hui Liao, Sharon Koonse, Anuli C. Anyanwu, Scott H. Visovatti, Michael A. Holinstat, J. Michelle Kahlenberg, Jason S. Knight, David J. Pinsky, Yogendra Kanthi

×

Full Text PDF | Download (2.97 MB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts