Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter
Michael S. Lipkowitz, … , Vesna Najfeld, Ruth G. Abramson
Michael S. Lipkowitz, … , Vesna Najfeld, Ruth G. Abramson
Published May 1, 2001
Citation Information: J Clin Invest. 2001;107(9):1103-1115. https://doi.org/10.1172/JCI12471.
View: Text | PDF
Article

Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter

  • Text
  • PDF
Abstract

Elevated serum levels of uric acid have been associated with an increased risk for gout, hypertension, cardiovascular disease, and renal failure. The molecular mechanisms for the diminished excretion of urate in these disorders, however, remain poorly understood. Human galectin 9, which is highly homologous to the rat urate transporter rUAT, has been reported to be a secreted or cytosolic protein. We provide data that galectin 9 is hUAT, the first identified human urate transporter. hUAT is a highly selective urate ion channel when inserted in lipid bilayers. When expressed in renal epithelial cells it is an integral plasma membrane protein with at least two transmembrane domains. The gene for hUAT consists of 11 exons and is mapped to chromosome 17; a highly homologous gene, hUAT2, maps to a nearby region of chromosome 17 and is also likely to be a urate transporter. hUAT is expressed in a wide variety of tissues and is present in at least three isoforms; hUAT2 is less widely expressed at severalfold lower levels than hUAT. Further knowledge about the functions of hUAT, its isoforms, and hUAT2, as well as mutational analysis of hUAT1 and hUAT2 in individuals or families with hyperuricemia, should significantly improve our understanding of the molecular mechanisms of urate homeostasis.

Authors

Michael S. Lipkowitz, Edgar Leal-Pinto, Joshua Z. Rappoport, Vesna Najfeld, Ruth G. Abramson

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 403 29
PDF 65 16
Figure 567 7
Table 126 0
Citation downloads 74 0
Totals 1,235 52
Total Views 1,287
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts