Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes.
Z Wu, … , N L Bucher, S R Farmer
Z Wu, … , N L Bucher, S R Farmer
Published January 1, 1998
Citation Information: J Clin Invest. 1998;101(1):22-32. https://doi.org/10.1172/JCI1244.
View: Text | PDF
Research Article

PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes.

  • Text
  • PDF
Abstract

To define the molecular mechanisms that control GLUT4 expression during adipogenesis, NIH-3T3 fibroblasts ectopically expressing different adipogenic transcription factors (C/EBPbeta, C/EBPdelta, C/EBPalpha, and PPARgamma) under the control of a tetracycline-responsive inducible (C/EBPs) or a constitutive retroviral (PPARgamma) expression system were used. Enhanced production of C/EBPbeta (beta2 cell line), C/EBPbeta together with C/EBPdelta (beta/delta39 cell line), C/EBPalpha (alpha1 cell line), or PPARgamma (Pgamma2 cell line) in cells exposed to dexamethasone and the PPARgamma ligand ciglitazone (a thiazolidinedione) resulted in expression of GLUT4 mRNA as well as other members of the adipogenic gene program, including aP2 and adipsin. Focusing our studies on the beta/delta39 cells, we have demonstrated that C/EBPbeta along with C/EBPdelta in the presence of dexamethasone induces PPARgamma, adipsin, and aP2 mRNA production; however, GLUT4 mRNA is only expressed in cells exposed to ciglitazone. In addition, enhanced expression of a ligand-activated form of PPARgamma in the beta/delta39 fibroblasts stimulates synthesis of GLUT4 protein and gives rise to a population of adipocytic cells that take up glucose in direct response to insulin. C/EBPalpha is not expressed in the beta/delta39 cells under conditions that stimulate the adipogenic program. This observation suggests that PPARgamma alone or in combination with C/EBPbeta and C/EBPdelta is capable of activating GLUT4 gene expression.

Authors

Z Wu, Y Xie, R F Morrison, N L Bucher, S R Farmer

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 548 160
PDF 80 65
Citation downloads 60 0
Totals 688 225
Total Views 913
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts