Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats.
A Okuno, … , Y Yazaki, T Kadowaki
A Okuno, … , Y Yazaki, T Kadowaki
Published March 15, 1998
Citation Information: J Clin Invest. 1998;101(6):1354-1361. https://doi.org/10.1172/JCI1235.
View: Text | PDF
Research Article

Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats.

  • Text
  • PDF
Abstract

Troglitazone (CS-045) is one of the thiazolidinediones that activate the peroxisome proliferator-activated receptor gamma (PPARgamma), which is expressed primarily in adipose tissues. To elucidate the mechanism by which troglitazone relieves insulin resistance in vivo, we studied its effects on the white adipose tissues of an obese animal model (obese Zucker rat). Administration of troglitazone for 15 d normalized mild hyperglycemia and marked hyperinsulinemia in these rats. Plasma triglyceride level was decreased by troglitazone in both obese and lean rats. Troglitazone did not change the total weight of white adipose tissues but increased the number of small adipocytes (< 2,500 micron2) approximately fourfold in both retroperitoneal and subcutaneous adipose tissues of obese rats. It also decreased the number of large adipocytes (> 5,000 micron2) by approximately 50%. In fact, the percentage of apoptotic nuclei was approximately 2.5-fold higher in the troglitazone-treated retroperitoneal white adipose tissue than control. Concomitantly, troglitazone normalized the expression levels of TNF-alpha which were elevated by 2- and 1.4-fold in the retroperitoneal and mesenteric white adipose tissues of the obese rats, respectively. Troglitazone also caused a dramatic decrease in the expression levels of leptin, which were increased by 4-10-fold in the white adipose tissues of obese rats. These results suggest that the primary action of troglitazone may be to increase the number of small adipocytes in white adipose tissues, presumably via PPARgamma. The increased number of small adipocytes and the decreased number of large adipocytes in white adipose tissues of troglitazone-treated obese rats appear to be an important mechanism by which increased expression levels of TNF-alpha and higher levels of plasma lipids are normalized, leading to alleviation of insulin resistance.

Authors

A Okuno, H Tamemoto, K Tobe, K Ueki, Y Mori, K Iwamoto, K Umesono, Y Akanuma, T Fujiwara, H Horikoshi, Y Yazaki, T Kadowaki

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 767 136
PDF 141 80
Citation downloads 37 0
Totals 945 216
Total Views 1,161
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts