Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen
Wen-Fang Cheng, Chien-Fu Hung, Chee-Yin Chai, Keng-Fu Hsu, Liangmei He, Morris Ling, T.-C. Wu
Wen-Fang Cheng, Chien-Fu Hung, Chee-Yin Chai, Keng-Fu Hsu, Liangmei He, Morris Ling, T.-C. Wu
View: Text | PDF
Article

Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen

  • Text
  • PDF
Abstract

Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8+ T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.

Authors

Wen-Fang Cheng, Chien-Fu Hung, Chee-Yin Chai, Keng-Fu Hsu, Liangmei He, Morris Ling, T.-C. Wu

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
In vivo tumor treatment experiments in C57BL/6 mice and C57BL/6 mice dep...
In vivo tumor treatment experiments in C57BL/6 mice and C57BL/6 mice depleted of both CD4+ and CD8+ T cells that are treated with various DNA constructs. Mice were challenged and subsequently treated with various DNA vaccines at a high therapeutic dose as described in Methods. (a) Tumor treatment experiments in C57BL/6 mice. (b) Tumor treatment experiments in C57BL/6 mice depleted of both CD4+ and CD8+ T cells. The data are expressed as mean number of pulmonary lung nodules ± SEM. Data shown are from one representative experiment of two performed.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts