Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance
Chunmei Yang, Kenneth J. Coker, Jason K. Kim, Silvia Mora, Debbie C. Thurmond, Ann C. Davis, Baoli Yang, Roger A. Williamson, Gerald I. Shulman, Jeffrey E. Pessin
Chunmei Yang, Kenneth J. Coker, Jason K. Kim, Silvia Mora, Debbie C. Thurmond, Ann C. Davis, Baoli Yang, Roger A. Williamson, Gerald I. Shulman, Jeffrey E. Pessin
View: Text | PDF
Article

Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance

  • Text
  • PDF
Abstract

To investigate the physiological function of syntaxin 4 in the regulation of GLUT4 vesicle trafficking, we used homologous recombination to generate syntaxin 4–knockout mice. Homozygotic disruption of the syntaxin 4 gene results in early embryonic lethality, whereas heterozygous knockout mice, Syn4+/–, had normal viability with no significant impairment in growth, development, or reproduction. However, the Syn4+/– mice manifested impaired glucose tolerance with a 50% reduction in whole-body glucose uptake. This defect was attributed to a 50% reduction in skeletal muscle glucose transport determined by 2-deoxyglucose uptake during hyperinsulinemic-euglycemic clamp procedures. In parallel, insulin-stimulated GLUT4 translocation in skeletal muscle was also significantly reduced in these mice. In contrast, Syn4+/– mice displayed normal insulin-stimulated glucose uptake and metabolism in adipose tissue and liver. Together, these data demonstrate that syntaxin 4 plays a critical physiological role in insulin-stimulated glucose uptake in skeletal muscle. Furthermore, reduction in syntaxin 4 protein levels in this tissue can account for the impairment in whole-body insulin-stimulated glucose metabolism in this animal model.

Authors

Chunmei Yang, Kenneth J. Coker, Jason K. Kim, Silvia Mora, Debbie C. Thurmond, Ann C. Davis, Baoli Yang, Roger A. Williamson, Gerald I. Shulman, Jeffrey E. Pessin

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Insulin stimulation results in the skeletal muscle surface-membrane tran...
Insulin stimulation results in the skeletal muscle surface-membrane translocation of GLUT4 in wild-type syn4+/+ but not heterozygotic syn4+/– mice. Syn4+/+ and syn4+/– mice were fasted overnight and either left untreated or stimulated with insulin as described in Methods. The hindquarter skeletal muscle was dissected and subjected to differential and sucrose velocity centrifugation as described under Methods. The surface-membrane fraction (a), as well as the intracellular-membrane fractions (b), were immunoblotted with the GLUT4 Ab. These are representative immunoblots performed from three different independent pairs of wild-type syn4+/+ and knockout syn4+/– mice.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts