The use of broad-spectrum antibiotics in empirical antimicrobial therapy is a lifesaving strategy for patients in intensive care. At the same time, antibiotics dramatically increase the risk for nosocomial infections, such as hospital‑acquired pneumonia caused by Pseudomonas aeruginosa, and other antibiotic-resistant bacteria. In this issue of the JCI, Robak and colleagues identified a mechanism by which depletion of resident gut and lung microbiota by antibiotic treatment results in secondary IgA deficiency and impaired anti–P. aeruginosa host defense. Impaired defenses could be improved by substitution of polyclonal IgA via the intranasal route in a mouse model of pneumonia. Importantly, antibiotic treatment caused lung IgA deficiency that involved reduced TLR-dependent production of a proliferation-inducing ligand (APRIL) and B cell–activating factor (BAFF) in intensive care unit patients. These patients might therefore benefit from future strategies to increase pulmonary IgA levels.


Juergen Lohmeyer, Rory E. Morty, Susanne Herold


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.