Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content.
Y Q Liu, … , K Tornheim, J L Leahy
Y Q Liu, … , K Tornheim, J L Leahy
Published May 1, 1998
Citation Information: J Clin Invest. 1998;101(9):1870-1875. https://doi.org/10.1172/JCI1211.
View: Text | PDF
Research Article

Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content.

  • Text
  • PDF
Abstract

Diabetic states are characterized by a raised serum/islet level of long chain fatty acids and a lowered ED50 for glucose-induced insulin secretion. Prolonged culture (> 6 h) of islets with long chain fatty acids replicates the basal insulin hypersecretion. We examined this effect in rat islets cultured for 24 h with 0.25 mM oleate. Insulin secretion at 2.8 mM glucose was doubled in combination with a 60% lowered islet content of glucose-6-phosphate (G6P). Investigation of the lowered G6P showed: (a) increased glucose usage from 0.5 to 100 mM glucose with identical values measured by [2-3H]glucose and [5-3H]glucose, (c) indicating little glucose- 6-phosphatase activity, (b) unchanged low pentose phosphate shunt activity, (c) 50% increased phosphofructokinase (PFK) Vmax, (d) a normal ATP/ADP ratio, and (e) unchanged fructose 2,6 bisphosphate content. Triacsin C, an inhibitor of fatty acyl-CoA synthetase, prevented the increase in PFK activity and the lowered G6P content. These results suggest that long chain acyl-CoA mediates the rise in PFK activity, which in turn lowers the G6P level. We speculate that the inhibition of hexokinase by G6P is thus attenuated, thereby causing the basal insulin hypersecretion.

Authors

Y Q Liu, K Tornheim, J L Leahy

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts