Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies
Justin Taylor, Dean Pavlick, Akihide Yoshimi, Christina Marcelus, Stephen S. Chung, Jaclyn F. Hechtman, Ryma Benayed, Emiliano Cocco, Benjamin H. Durham, Lillian Bitner, Daichi Inoue, Young Rock Chung, Kerry Mullaney, Justin M. Watts, Eli L. Diamond, Lee A. Albacker, Tariq I. Mughal, Kevin Ebata, Brian B. Tuch, Nora Ku, Maurizio Scaltriti, Mikhail Roshal, Maria Arcila, Siraj Ali, David M. Hyman, Jae H. Park, Omar Abdel-Wahab
Justin Taylor, Dean Pavlick, Akihide Yoshimi, Christina Marcelus, Stephen S. Chung, Jaclyn F. Hechtman, Ryma Benayed, Emiliano Cocco, Benjamin H. Durham, Lillian Bitner, Daichi Inoue, Young Rock Chung, Kerry Mullaney, Justin M. Watts, Eli L. Diamond, Lee A. Albacker, Tariq I. Mughal, Kevin Ebata, Brian B. Tuch, Nora Ku, Maurizio Scaltriti, Mikhail Roshal, Maria Arcila, Siraj Ali, David M. Hyman, Jae H. Park, Omar Abdel-Wahab
View: Text | PDF
Concise Communication Hematology Oncology

Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies

  • Text
  • PDF
Abstract

Rearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown. Here, through an evaluation for TRK fusions across more than 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma, and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively, TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.

Authors

Justin Taylor, Dean Pavlick, Akihide Yoshimi, Christina Marcelus, Stephen S. Chung, Jaclyn F. Hechtman, Ryma Benayed, Emiliano Cocco, Benjamin H. Durham, Lillian Bitner, Daichi Inoue, Young Rock Chung, Kerry Mullaney, Justin M. Watts, Eli L. Diamond, Lee A. Albacker, Tariq I. Mughal, Kevin Ebata, Brian B. Tuch, Nora Ku, Maurizio Scaltriti, Mikhail Roshal, Maria Arcila, Siraj Ali, David M. Hyman, Jae H. Park, Omar Abdel-Wahab

×

Figure 2

TRK fusions confer responsiveness to TRK inhibition in hematopoietic malignancies in vitro and in vivo.

Options: View larger image (or click on image) Download as PowerPoint
TRK fusions confer responsiveness to TRK inhibition in hematopoietic mal...
(A) Colony numbers derived from c-Kit+ murine bone marrow cells stably expressing the indicated constructs grown in increasing concentrations (0, 25, and 50 nM) of larotrectinib in methylcellulose. (B) Cell viability of IL-3–independent 32D cells expressing TRK fusions following 72 hours of larotrectinib or vehicle treatment. The IC50 is calculated from the slope of the log inhibitor versus response curve. (C) Schematic of creation and testing of larotrectinib in a PDX from a patient with AML with an ETV6-NTRK2 fusion. (D) Flow cytometric analysis of mouse versus human cell subsets (mCD45 versus hCD45) in BM of a PDX after larotrectinib or vehicle treatment. Each row represents a distinct individual mouse xenografted with the same patient sample; all percentages represent percentage of live mouse Ter119–negative (mTer119-negative) cells. (E) Anti-hCD45 immunohistochemical analysis in BM from PDX mice treated with vehicle or larotrectinib for 14 days (top row scale bar, 200 μm; bottom row scale bar, 50 μm). Each column represents a distinct individual mouse xenografted with the same patient sample. Error bars represent mean and SD from triplicate samples. Differences were calculated using a 2-sided Student’s t test and corrected for multiple testing using the Bonferroni method (*P < 0.0125).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts