Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn’s disease
Ta-Chiang Liu, … , Richard D. Head, Thaddeus S. Stappenbeck
Ta-Chiang Liu, … , Richard D. Head, Thaddeus S. Stappenbeck
Published August 23, 2018
Citation Information: J Clin Invest. 2018;128(11):5110-5122. https://doi.org/10.1172/JCI120453.
View: Text | PDF
Research Article Gastroenterology Immunology

Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn’s disease

  • Text
  • PDF
Abstract

It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn’s disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell–enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell–specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.

Authors

Ta-Chiang Liu, Justin T. Kern, Kelli L. VanDussen, Shanshan Xiong, Gerard E. Kaiko, Craig B. Wilen, Michael W. Rajala, Roberta Caruso, Michael J. Holtzman, Feng Gao, Dermot P.B. McGovern, Gabriel Nunez, Richard D. Head, Thaddeus S. Stappenbeck

×

Figure 6

Pparg-associated metabolism dysregulation resulted in crypt base apoptosis and Paneth cell defects.

Options: View larger image (or click on image) Download as PowerPoint

Pparg-associated metabolism dysregulation resulted in crypt base apopto...
(A) Workflow for Paneth cell LCM of the mice in the T300A-smoking study. (B) Significantly downregulated Pparg-associated genes were found in all 3 data sets, including the Atg16l1T300A-smoking mice (n = 108 genes), Atg16l1HM MNV-infected mice (n = 298 genes), and CD subjects that were ATG16L1T300A-smokings (n = 166 genes). Adjusted P value for each group (by ChEA, https://omictools.com/chea-tool): #P = 0.0044; ##P = 0.0004; ###P = 0.038. Ppar-γ agonist rosiglitazone (Rosi) treatment rescued (C) Paneth cell defects (P < 0.0001) and (D) crypt base apoptosis (P < 0.0001) in Atg16l1T300A mice exposed to cigarette smoking. (C and D) Total n = 9/group for nonsmoking groups; n 0/group for smoking groups. Rosiglitazone administration prevented the (E) Paneth cell defects and (F) crypt apoptosis of PC-Cre+ smoking mice (n = 4/group). (C–E) Statistical analysis was performed using 2-way ANOVA. *P < 0.05, ****P < 0.0001. Data represent mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts