Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119888

In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors.

A Kojima, N R Hackett, A Ohwada, and R G Crystal

Division of Pulmonary and Critical Care Medicine, The New York Hospital-Cornell Medical Center, New York 10021, USA.

Find articles by Kojima, A. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, The New York Hospital-Cornell Medical Center, New York 10021, USA.

Find articles by Hackett, N. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, The New York Hospital-Cornell Medical Center, New York 10021, USA.

Find articles by Ohwada, A. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, The New York Hospital-Cornell Medical Center, New York 10021, USA.

Find articles by Crystal, R. in: PubMed | Google Scholar

Published April 15, 1998 - More info

Published in Volume 101, Issue 8 on April 15, 1998
J Clin Invest. 1998;101(8):1789–1796. https://doi.org/10.1172/JCI119888.
© 1998 The American Society for Clinical Investigation
Published April 15, 1998 - Version history
View PDF
Abstract

To evaluate the concept that in vivo transfer of the human carboxylesterase gene will confer sensitivity of a solid tumor to the prodrug CPT-11 (irinotecan), we constructed an adenovirus vector (AdCMV.CE) carrying the human carboxylesterase gene driven by the cytomegalovirus (CMV) promoter, infected A549 human lung adenocarcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CE produced a functional carboxylesterase protein in A549 cells in vitro and in vivo as evidenced by ability of lysates from the infected cells to convert CPT-11 to its active metabolite SN-38. The AdCMV.CE vector effectively suppressed A549 cell growth in vitro in the presence of CPT-11. Cell mixing studies demonstrated that when as few as 10% of cells expressed the human carboxylesterase gene, there was bystander growth suppression in the presence of CPT-11. Consistent with these in vitro observations, when AdCMV.CE was directly injected into established subcutaneous A549 tumors in nude mice receiving CPT-11, there was 35% reduction in tumor size at day 27 compared to controls, and a 41% reduction at day 34 (P < 0.01, both comparisons to controls). Similar observations were made with the cell line H157 and HeLa. These observations suggest that local gene transfer of the human carboxylesterase gene and concomitant local administration of CPT-11 may have potential as a strategy for control of the growth of solid tumors.

Version history
  • Version 1 (April 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts