Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119842

Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids.

V Shah, F G Haddad, G Garcia-Cardena, J A Frangos, A Mennone, R J Groszmann, and W C Sessa

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Shah, V. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Haddad, F. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Garcia-Cardena, G. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Frangos, J. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Mennone, A. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Groszmann, R. in: PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Find articles by Sessa, W. in: PubMed | Google Scholar

Published December 1, 1997 - More info

Published in Volume 100, Issue 11 on December 1, 1997
J Clin Invest. 1997;100(11):2923–2930. https://doi.org/10.1172/JCI119842.
© 1997 The American Society for Clinical Investigation
Published December 1, 1997 - Version history
View PDF
Abstract

The mechanisms that regulate vascular resistance in the liver are an area of active investigation. Previously, we have shown that nitric oxide (NO) modulates hepatic vascular tone in the normal rat liver. In this study, the production of NO is examined in further detail by isolating sinusoidal endothelial cells (SEC) from the rat liver. Endothelial NO synthase (eNOS) was present in SEC based on Western blotting and confocal immunofluorescence microscopy. Exposure of SEC to flow increased the release of NO. To investigate the relevance of these in vitro findings to the intact liver, we modified an in situ perfusion system to allow for direct measurement of NO release from the hepatic vasculature. NO was released from the hepatic vasculature in a time-dependent manner, and administration of N-monomethyl-L-arginine reduced NO release and increased portal pressure. Immunostaining of intact liver demonstrated eNOS localization to endothelial cells lining the hepatic sinusoids. These findings demonstrate that SEC in vitro and in vivo express eNOS and produce NO basally, and increase their production in response to flow. Additionally, an increase in portal pressure concomitant with the blockade of NO release directly demonstrates that endogenous endothelial-derived NO modulates portal pressure.

Version history
  • Version 1 (December 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts