Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119803

Protease-resistant form of insulin-like growth factor-binding protein 5 is an inhibitor of insulin-like growth factor-I actions on porcine smooth muscle cells in culture.

Y Imai, W H Busby Jr, C E Smith, J B Clarke, A J Garmong, G D Horwitz, C Rees, and D R Clemmons

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Imai, Y. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Busby, W. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Smith, C. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Clarke, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Garmong, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Horwitz, G. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Rees, C. in: JCI | PubMed | Google Scholar

Department of Medicine, University of North Carolina School of Medicine, Chapel Hill 27599-7170, USA.

Find articles by Clemmons, D. in: JCI | PubMed | Google Scholar

Published November 15, 1997 - More info

Published in Volume 100, Issue 10 on November 15, 1997
J Clin Invest. 1997;100(10):2596–2605. https://doi.org/10.1172/JCI119803.
© 1997 The American Society for Clinical Investigation
Published November 15, 1997 - Version history
View PDF
Abstract

IGFs are pleiotrophic mitogens for porcine smooth muscle cells (pSMC) in culture. The effects of IGFs on cells are modulated by various insulin-like growth factor-binding proteins (IGFBP). IGFBP-5 is synthesized by pSMC and binds to the extracellular matrix. However, IGFBP-5 is also secreted into conditioned medium of cultured cells and is cleaved into fragments by a concomitantly produced protease. These fragments have reduced affinity for the IGFs and cleavage makes it difficult to assess the role of intact IGFBP-5. To study the consequence of accumulation of intact IGFBP-5 in medium, we determined the cleavage site in IGFBP-5 and prepared a protease resistant mutant. Amino acid sequencing of purified IGFBP-5 fragments suggested Arg138-Arg139 as the primary cleavage site. Arg138-Arg139-->Asn138-Asn139 mutations were introduced to create protease-resistant IGFBP-5, which has the same affinity for IGF-I as the native protein. This mutant IGFBP-5 remained intact even after 24 h of incubation and it inhibited several IGF-I actions when added to pSMC culture medium. The mutant IGFBP-5 (500 ng/ml) decreased IGF-I stimulated cellular DNA synthesis by 84%, protein synthesis by 77%, and it inhibited IGF-I stimulated migration of pSMC by 77%. It also inhibited IGF-I stimulation of IRS-1 phosphorylation. In contrast, the same amount of native IGFBP-5 did not inhibit IGF-I actions. The significance of inhibitory effects of the protease resistant IGFBP-5 was further demonstrated in pSMC transfected with mutant or native IGFBP-5 cDNAs. The mutant IGFBP-5 accumulated in culture medium of transfected cells, while native IGFBP-5 was degraded into fragments, PSMC overexpressing the mutant IGFBP-5 also responded poorly to IGF-I compared with mock transfected cells. IGF-I (5 ng/ml) increased [35S]methionine incorporation into control cells by 36% above the basal level, but it did not significantly change (4%) in pSMC cultures that were producing the mutant IGFBP-5. In conclusion, the accumulation of protease-resistant IGFBP-5 in the medium was inhibitory to IGF-I actions on pSMC. This suggests that proteolysis can prevent IGFBP-5 from acting as an inhibitor of IGF-I-stimulated effects and that it serves as an important mechanism for regulating cellular responsiveness to IGF-I.

Version history
  • Version 1 (November 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts