Advertisement
Research Article Free access | 10.1172/JCI119756
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Fernandes, I. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Hampson, G. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Cahours, X. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Morin, P. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Coureau, C. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Couette, S. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Prie, D. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Biber, J. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Murer, H. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Friedlander, G. in: JCI | PubMed | Google Scholar
Inserm U 426, Faculté Xavier Bichat and Université Paris VII, France.
Find articles by Silve, C. in: JCI | PubMed | Google Scholar
Published November 1, 1997 - More info
To explore the possibility that vitamin D status regulates sulfate homeostasis, plasma sulfate levels, renal sulfate excretion, and the expression of the renal Na-SO4 cotransporter were evaluated in vitamin D-deficient (D-D-) rats and in D-D- rats rendered normocalcemic by either vitamin D or calcium/lactose supplementation. D-D- rats had significantly lower plasma sulfate levels than control animals (0.93+/-0.01 and 1.15+/-0.05 mM, respectively, P < 0.05), and fractional sulfate renal excretion was approximately threefold higher comparing D-D- and control rats. A decrease in renal cortical brush border membrane Na-SO4 cotransport activity, associated with a parallel decrease in both renal Na-SO4 cotransport protein and mRNA content (78+/-3 and 73+/-3% decreases, respectively, compared with control values), was also observed in D-D- rats. Vitamin D supplementation resulted in a return to normal of plasma sulfate, fractional sulfate excretion, and both renal Na-SO4 cotransport mRNA and protein. In contrast, renal sulfate excretion and renal Na-SO4 cotransport activity, protein abundance, and mRNA remained decreased in vitamin D-depleted rats fed a diet supplemented with lactose and calcium, despite that these rats were normocalcemic, and had significantly lower levels of parathyroid hormone and 25(OH)- and 1,25(OH)2-vitamin D levels than the vitamin D-supplemented groups. These results demonstrate that vitamin D modulates renal Na-SO4 sulfate cotransport and sulfate homeostasis. The ability of vitamin D status to regulate Na-SO4 cotransport appears to be a direct effect, and is not mediated by the effects of vitamin D on plasma calcium or parathyroid hormone levels. Because sulfate is required for synthesis of essential matrix components, abnormal sulfate metabolism in vitamin D-deficient animals may contribute to producing some of the abnormalities observed in rickets and osteomalacia.