Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119688

Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation.

S M Levitz, T S Harrison, A Tabuni, and X Liu

The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA. slevitz@med-med1.bu.edu

Find articles by Levitz, S. in: PubMed | Google Scholar

The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA. slevitz@med-med1.bu.edu

Find articles by Harrison, T. in: PubMed | Google Scholar

The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA. slevitz@med-med1.bu.edu

Find articles by Tabuni, A. in: PubMed | Google Scholar

The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA. slevitz@med-med1.bu.edu

Find articles by Liu, X. in: PubMed | Google Scholar

Published September 15, 1997 - More info

Published in Volume 100, Issue 6 on September 15, 1997
J Clin Invest. 1997;100(6):1640–1646. https://doi.org/10.1172/JCI119688.
© 1997 The American Society for Clinical Investigation
Published September 15, 1997 - Version history
View PDF
Abstract

Infections due to Cryptococcus neoformans are common in AIDS patients. We investigated the effect of chloroquine, which raises the pH of phagolysosomes, on the anticryptococcal activity of mononuclear phagocytes. C. neoformans multiplied within monocyte-derived macrophages (MDM) in the absence of chloroquine but were killed with the addition of chloroquine. Ammonium chloride was also beneficial, suggesting that effects were mediated by alkalinizing the phagolysosome. Chloroquine inhibits growth of other intracellular pathogens by limiting iron availability. However, chloroquine-induced augmentation of MDM anticryptococcal activity was unaffected by iron nitriloacetate, demonstrating that chloroquine worked by a mechanism independent of iron deprivation. There was an inverse correlation between growth of C. neoformans in cell-free media and pH, suggesting that some of the effect of chloroquine on the anticryptococcal activity of MDM could be explained by relatively poor growth at higher pH. Chloroquine enhanced MDM anticryptococcal activity against all tested cryptococcal strains except for one large-capsule strain which was not phagocytosed. Positive effects of chloroquine were also seen in monocytes from both HIV-infected and -uninfected donors. Finally, chloroquine was therapeutic in experimental cryptococcosis in outbred and severe combined immunodeficient mice. Thus, chloroquine enhances the activity of mononuclear phagocytes against C. neoformans by iron-independent, pH-dependent mechanisms and is therapeutic in murine models of cryptococcosis. Chloroquine might have clinical utility for the prophylaxis and treatment of human cryptococcosis.

Version history
  • Version 1 (September 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts