Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119686

Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist.

S K Mahata, D T O'Connor, M Mahata, S H Yoo, L Taupenot, H Wu, B M Gill, and R J Parmer

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Mahata, S. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by O'Connor, D. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Mahata, M. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Yoo, S. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Taupenot, L. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Wu, H. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Gill, B. in: PubMed | Google Scholar

Department of Medicine and Center for Molecular Genetics, University of California, San Diego, California 92093, USA.

Find articles by Parmer, R. in: PubMed | Google Scholar

Published September 15, 1997 - More info

Published in Volume 100, Issue 6 on September 15, 1997
J Clin Invest. 1997;100(6):1623–1633. https://doi.org/10.1172/JCI119686.
© 1997 The American Society for Clinical Investigation
Published September 15, 1997 - Version history
View PDF
Abstract

Catecholamine secretory vesicle core proteins (chromogranins) contain an activity that inhibits catecholamine release, but the identity of the responsible peptide has been elusive. Size-fractionated chromogranins antagonized nicotinic cholinergic-stimulated catecholamine secretion; the inhibitor was enriched in processed chromogranin fragments, and was liberated from purified chromogranin A. Of 15 synthetic peptides spanning approximately 80% of chromogranin A, one (bovine chromogranin A344-364 [RSMRLSFRARGYGFRGPGLQL], or catestatin) was a potent, dose-dependent (IC50 approximately 200 nM), reversible secretory inhibitor on pheochromocytoma and adrenal chromaffin cells, as well as noradrenergic neurites. An antibody directed against this peptide blocked the inhibitory effect of chromogranin A proteolytic fragments on nicotinic-stimulated catecholamine secretion. This region of chromogranin A is extensively processed within chromaffin vesicles in vivo. The inhibitory effect was specific for nicotinic cholinergic stimulation of catecholamine release, and was shared by this chromogranin A region from several species. Nicotinic cationic (Na+, Ca2+) signal transduction was specifically disrupted by catestatin. Even high-dose nicotine failed to overcome the inhibition, suggesting noncompetitive nicotinic antagonism. This small domain within chromogranin A may contribute to a novel, autocrine, homeostatic (negative-feedback) mechanism controlling catecholamine release from chromaffin cells and neurons.

Version history
  • Version 1 (September 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts