Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119666

Removal of erythrocyte membrane iron in vivo ameliorates the pathobiology of murine thalassemia.

P V Browne, O Shalev, F A Kuypers, C Brugnara, A Solovey, N Mohandas, S L Schrier, and R P Hebbel

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Browne, P. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Shalev, O. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Kuypers, F. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Brugnara, C. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Solovey, A. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Mohandas, N. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Schrier, S. in: PubMed | Google Scholar

Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Find articles by Hebbel, R. in: PubMed | Google Scholar

Published September 15, 1997 - More info

Published in Volume 100, Issue 6 on September 15, 1997
J Clin Invest. 1997;100(6):1459–1464. https://doi.org/10.1172/JCI119666.
© 1997 The American Society for Clinical Investigation
Published September 15, 1997 - Version history
View PDF
Abstract

Abnormal deposits of free iron are found on the cytoplasmic surface of red blood cell (RBC) membranes in beta-thalassemia. To test the hypothesis that this is of importance to RBC pathobiology, we administered the iron chelator deferiprone (L1) intraperitoneally to beta-thalassemic mice for 4 wk and then studied RBC survival and membrane characteristics. L1 therapy decreased membrane free iron by 50% (P = 0.04) and concomitantly improved oxidation of membrane proteins (P = 0.007), the proportion of RBC gilded with immunoglobulin (P = 0.001), RBC potassium content (P < 0.001), and mean corpuscular volume (P < 0.001). Osmotic gradient ektacytometry confirmed a trend toward improvement of RBC hydration status. As determined by clearance of RBC biotinylated in vivo, RBC survival also was significantly improved in L1-treated mice compared with controls (P = 0.007). Thus, in vivo therapy with L1 removes pathologic free iron deposits from RBC membranes in murine thalassemia, and causes improvement in membrane function and RBC survival. This result provides in vivo confirmation that abnormal membrane free iron deposits contribute to the pathobiology of thalassemic RBC.

Version history
  • Version 1 (September 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts