Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119618

Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.

X Xiong, A Bragin, J H Widdicombe, J Cohn, and W R Skach

Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Find articles by Xiong, X. in: JCI | PubMed | Google Scholar

Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Find articles by Bragin, A. in: JCI | PubMed | Google Scholar

Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Find articles by Widdicombe, J. in: JCI | PubMed | Google Scholar

Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Find articles by Cohn, J. in: JCI | PubMed | Google Scholar

Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Find articles by Skach, W. in: JCI | PubMed | Google Scholar

Published September 1, 1997 - More info

Published in Volume 100, Issue 5 on September 1, 1997
J Clin Invest. 1997;100(5):1079–1088. https://doi.org/10.1172/JCI119618.
© 1997 The American Society for Clinical Investigation
Published September 1, 1997 - Version history
View PDF
Abstract

Abnormal folding of mutant cystic fibrosis transmembrane conductance regulator (CFTR) and subsequent degradation in the endoplasmic reticulum is the basis for most cases of cystic fibrosis. Structural differences between wild-type (WT) and mutant proteins, however, remain unknown. Here we examine the intracellular trafficking, degradation, and transmembrane topology of two mutant CFTR proteins, G85E and G91R, each of which contains an additional charged residue within the first putative transmembrane helix (TM1). In microinjected Xenopus laevis oocytes, these mutations markedly disrupted CFTR plasma membrane chloride channel activity. G85E and G91R mutants (but not a conservative mutant, G91A) failed to acquire complex N-linked carbohydrates, and were rapidly degraded before reaching the Golgi complex thus exhibiting a trafficking phenotype similar to DeltaF508 CFTR. Topologic analysis revealed that neither G85E nor G91R mutations disrupted CFTR NH2 terminus transmembrane topology. Instead, WT as well as mutant TM1 spanned the membrane in the predicted C-trans (type II) orientation, and residues 85E and 91R were localized within or adjacent to the plane of the lipid bilayer. To understand how these charged residues might provide structural cues for ER degradation, we examined the stability of WT, G85E, and G91R CFTR proteins truncated at codons 188, 393, 589, or 836 (after TM2, TM6, the first nucleotide binding domain, or the R domain, respectively). These results indicated that G85E and G91R mutations affected CFTR folding, not by gross disruption of transmembrane assembly, but rather through insertion of a charged residue within the plane of the bilayer, which in turn influenced higher order tertiary structure.

Version history
  • Version 1 (September 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts